
Cookies, Sessions, and
Persistence
Cookies and sessions are the most useful hack invented, allowing
HTTP to become stateful and applications to work on the web. But
it is persistence that ties the two together and makes the web what
it is today.

White Paper

by Lori MacVittie



Introduction
HTTP (HyperText Transfer Protocol) was designed to support a stateless, request-

response model of transferring data from a server to a client. Its first version, 1.0,

supported a purely 1:1 request to connection ratio (that is, one request-response

pair was supported per connection).

Its second version, 1.1, expanded that ratio to be N:1—that is, many requests per

connection. This was done in order to address the growing complexity of web

pages, including of the many objects and elements that need to be transferred from

the server to the client.

Somewhere along the line, HTTP became more than just a simple mechanism for

transferring text and images from a server to a client; it became a platform for

applications. The ubiquity of the browser, cross-platform nature, and ease with

which applications could be deployed without the heavy cost of supporting multiple

operating systems and environments was certainly appealing. Unfortunately, HTTP

was not designed to be an application transport protocol. It was designed to

transfer documents. Despite the fact that both documents and application

protocols are generally text-based, the resemblance ends there. Applications require

some way to maintain their state, while documents do not. Applications are built on

logical flows and processes, both of which require that the application know where

the user is during this time, and that requires state. HTTP is stateless, so it seems

obvious that HTTP would not be appropriate for delivering applications. But it has

become the de facto application transport protocol of the web. In what is certainly

one of the most widely accepted, useful hacks in technical history, HTTP was given

the means by which state could be tracked throughout the use of an application.

That "hack" is where sessions and cookies come into play.

Sessions

Transforming the Stateless into the Stateful

Sessions are the way in which web and application servers maintain state. These

simple chunks of memory are associated with every TCP connection made to a web

or application server, and serve as in-memory storage for information in HTTP-based

applications.

When a user connects to a server for the first time, a corresponding session is

created and associated with the connection. Developers then use that session as a

place to store bits of application-relevant data. This data can range from important

information such as a customer ID to less consequential data such as how you like

to see the front page of the site displayed.

The best example of the usefulness of sessions is shopping carts, because nearly all

of us have shopped online at one time or another. Items in a shopping cart remain

over the course of a "session" because every item in your shopping cart is

represented in some way in the session on the server. Another good example is

wizard-style product configuration or customization applications. These "mini"

applications enable you to browse a set of options and select them; at the end, you

are usually shocked by the estimated cost of all the bells and whistles you added. As

you click through each "screen of options," the other options you chose are stored

in the session so they can be easily retrieved, added, or deleted.

The problem is that sessions are tied to connections, and also to connections left

idle for too long time out. Also, the definition of "too long" for connections is quite a

bit different than when it is applied to sessions. The default configuration for

Apache, for example, is to close a connection once it has been idle—that is, no

more requests have been made—for 15 seconds. Conversely, a session in Apache,

by default, will remain in memory for 300 seconds, or 5 minutes. Obviously the two

are at odds with one another, because once the connection times out, what good is

the session if it's associated with the connection?

You might think you could simply increase the connection time-out value to match

the session and address this disparity. Increasing the time-out means that you're

potentially going to expend memory to maintain a connection that may or may not

be used. This can decrease the total concurrent user capacity of your server as well

as ultimately impede its performance. And you certainly don't want to decrease the

session timeout to match the connection time out, because most people take more

than five minutes to shop around or customize their new toy.

Thus, what you end up with is sessions that remain as memory on the server even

after its associated connection has been terminated due to inactivity, chewing up

valuable resources and potentially angering users for whom your application just

doesn't work.

Luckily, this problem is solved through the use of cookies.

Cookies

The Trail of Crumbs Leads Home

Cookies are bits of data stored on the client by the browser. Cookies can, and do,

store all sorts of interesting tidbits about you, your applications, and the sites you

visit. The term "cookie" is derived from "magic cookie," a well-known concept in

UNIX computing that inspired both the idea and the name. Cookies are created and

shared between the browser and the server via the HTTP Header, Cookie.

 Cookie: JSESSIONID=9597856473431 Cache‐Control: no‐cache Host: 127.

0.0.2:8080 Connection: Keep‐Alive

The browser automatically knows it should store the cookie in the HTTP header in a

file on your computer, and it keeps track of cookies on a per domain basis. The

cookies for any given domain are always passed to the server by the browser in the

HTTP headers, so developers of web applications can retrieve those values simply

by asking for them on the server-side of the application.

The way in which the session/connection length problem is solved is through a

cookie. Almost all modern web applications generate a "session ID" and pass it

along as a cookie. This enables the application to find the session on the server

even after the connection from which the session was created is closed. Through

this exchange of session IDs, state is maintained even for a stateless protocol like

HTTP. But what happens when the use of a web application outgrows the capability

of a single web or application server? Usually a load balancer, or in today's

architectures an Application Delivery Controller (ADC), is introduced in order to scale

the application such that all users are satisfied with the availability and performance.

The problem with this is that load balancing algorithms are generally concerned only

with distributing requests across servers. Load balancing techniques are based on

industry standard algorithms like round robin, least connections, or fastest

response time. None of them are stateful, and it is possible for the same user to

have each request made to an application be distributed to a different server. This

makes all the work done to implement state for HTTP useless, because the data

stored in one server's session is rarely shared with other servers in the "web farm."

This is where the concept of persistence comes in handy.

Persistence

The Tie that Binds

Persistence— otherwise known as stickiness—is a technique implemented by

Application Delivery Controllers that ensures requests from a single user are always

distributed to the server on which they started.

Persistence has long been used in load balancing SSL-enabled sites because once

the negotiation process—a compute intensive one—has been completed and keys

exchanged it would significantly degrade performance to start the process again.

Thus, ADCs implemented SSL session persistence to ensure that users were

always directed to the same server to which they first connected.

With the release of Microsoft Internet Explorer 5.01 , SSL persistence was suddenly

rendered inoperable. The browser would automatically renegotiate SSL sessions

every two minutes, necessarily changing the session ID and making it impossible to

persist connections based on the session ID. The "fix" supplied by Microsoft

required changes to the registry, something most burgeoning e-commerce sites

considered a non-viable solution for their customers. It was therefore necessary to

find an alternative solution in order to continue to support persistence. Load

balancing vendors came to the rescue and offered a viable workaround: cookie-

based persistence.

Rather than rely on the SSL session ID, the load balancer would insert a cookie to

uniquely identify the session the first time a client accessed the site and then refer to

that cookie in subsequent requests to persist the connection to the appropriate

server.

The concept of cookie-based persistence has since been applied to application

sessions, using session ID information generated by web and application servers to

ensure that user requests are always directed to the same server during the same

session. Without this capability, applications requiring load balancing would need to

find another way to share session information or resort to increasing session and

connection time outs to the point that the number of servers needed to support its

user base would quickly grow unmanageable.

Although the most common form of persistence is implemented using session IDs

passed in the HTTP header, ADCs today can persist on other pieces of data as well.

Any data that can be stored in a cookie or derived from the IP, TCP, or HTTP

headers can be used to persist a session. In fact, any data within an application

message that uniquely identifies the user can be used by an intelligent ADC to

persist a connection between the browser and a server.

Conclusion
HTTP may be a stateless protocol, but we have managed through the use of

technology to force-fit state into the ubiquitous protocol. Through the use of

persistence and Application Delivery Controllers, it is possible to architect highly

available, performant web applications without breaking the somewhat brittle

integration of cookies and sessions required to maintain state.

These features are what give HTTP state, though its implementation and execution

remains stateless. Without cookies, sessions, and persistence, we surely would

have found a stateful protocol on which to build our applications. Instead, features

and functionality found in Application Delivery Controllers mediate between

browsers (clients) and servers to provide this functionality, extending the useful of

HTTP beyond static web pages to the Rich Internet Applications (RIA) of today.

1

WHITE PAPER

Cookies, Sessions, and Persistence
®



Introduction
HTTP (HyperText Transfer Protocol) was designed to support a stateless, request-

response model of transferring data from a server to a client. Its first version, 1.0,

supported a purely 1:1 request to connection ratio (that is, one request-response

pair was supported per connection).

Its second version, 1.1, expanded that ratio to be N:1—that is, many requests per

connection. This was done in order to address the growing complexity of web

pages, including of the many objects and elements that need to be transferred from

the server to the client.

Somewhere along the line, HTTP became more than just a simple mechanism for

transferring text and images from a server to a client; it became a platform for

applications. The ubiquity of the browser, cross-platform nature, and ease with

which applications could be deployed without the heavy cost of supporting multiple

operating systems and environments was certainly appealing. Unfortunately, HTTP

was not designed to be an application transport protocol. It was designed to

transfer documents. Despite the fact that both documents and application

protocols are generally text-based, the resemblance ends there. Applications require

some way to maintain their state, while documents do not. Applications are built on

logical flows and processes, both of which require that the application know where

the user is during this time, and that requires state. HTTP is stateless, so it seems

obvious that HTTP would not be appropriate for delivering applications. But it has

become the de facto application transport protocol of the web. In what is certainly

one of the most widely accepted, useful hacks in technical history, HTTP was given

the means by which state could be tracked throughout the use of an application.

That "hack" is where sessions and cookies come into play.

Sessions

Transforming the Stateless into the Stateful

Sessions are the way in which web and application servers maintain state. These

simple chunks of memory are associated with every TCP connection made to a web

or application server, and serve as in-memory storage for information in HTTP-based

applications.

When a user connects to a server for the first time, a corresponding session is

created and associated with the connection. Developers then use that session as a

place to store bits of application-relevant data. This data can range from important

information such as a customer ID to less consequential data such as how you like

to see the front page of the site displayed.

The best example of the usefulness of sessions is shopping carts, because nearly all

of us have shopped online at one time or another. Items in a shopping cart remain

over the course of a "session" because every item in your shopping cart is

represented in some way in the session on the server. Another good example is

wizard-style product configuration or customization applications. These "mini"

applications enable you to browse a set of options and select them; at the end, you

are usually shocked by the estimated cost of all the bells and whistles you added. As

you click through each "screen of options," the other options you chose are stored

in the session so they can be easily retrieved, added, or deleted.

The problem is that sessions are tied to connections, and also to connections left

idle for too long time out. Also, the definition of "too long" for connections is quite a

bit different than when it is applied to sessions. The default configuration for

Apache, for example, is to close a connection once it has been idle—that is, no

more requests have been made—for 15 seconds. Conversely, a session in Apache,

by default, will remain in memory for 300 seconds, or 5 minutes. Obviously the two

are at odds with one another, because once the connection times out, what good is

the session if it's associated with the connection?

You might think you could simply increase the connection time-out value to match

the session and address this disparity. Increasing the time-out means that you're

potentially going to expend memory to maintain a connection that may or may not

be used. This can decrease the total concurrent user capacity of your server as well

as ultimately impede its performance. And you certainly don't want to decrease the

session timeout to match the connection time out, because most people take more

than five minutes to shop around or customize their new toy.

Thus, what you end up with is sessions that remain as memory on the server even

after its associated connection has been terminated due to inactivity, chewing up

valuable resources and potentially angering users for whom your application just

doesn't work.

Luckily, this problem is solved through the use of cookies.

Cookies

The Trail of Crumbs Leads Home

Cookies are bits of data stored on the client by the browser. Cookies can, and do,

store all sorts of interesting tidbits about you, your applications, and the sites you

visit. The term "cookie" is derived from "magic cookie," a well-known concept in

UNIX computing that inspired both the idea and the name. Cookies are created and

shared between the browser and the server via the HTTP Header, Cookie.

 Cookie: JSESSIONID=9597856473431 Cache‐Control: no‐cache Host: 127.

0.0.2:8080 Connection: Keep‐Alive

The browser automatically knows it should store the cookie in the HTTP header in a

file on your computer, and it keeps track of cookies on a per domain basis. The

cookies for any given domain are always passed to the server by the browser in the

HTTP headers, so developers of web applications can retrieve those values simply

by asking for them on the server-side of the application.

The way in which the session/connection length problem is solved is through a

cookie. Almost all modern web applications generate a "session ID" and pass it

along as a cookie. This enables the application to find the session on the server

even after the connection from which the session was created is closed. Through

this exchange of session IDs, state is maintained even for a stateless protocol like

HTTP. But what happens when the use of a web application outgrows the capability

of a single web or application server? Usually a load balancer, or in today's

architectures an Application Delivery Controller (ADC), is introduced in order to scale

the application such that all users are satisfied with the availability and performance.

The problem with this is that load balancing algorithms are generally concerned only

with distributing requests across servers. Load balancing techniques are based on

industry standard algorithms like round robin, least connections, or fastest

response time. None of them are stateful, and it is possible for the same user to

have each request made to an application be distributed to a different server. This

makes all the work done to implement state for HTTP useless, because the data

stored in one server's session is rarely shared with other servers in the "web farm."

This is where the concept of persistence comes in handy.

Persistence

The Tie that Binds

Persistence— otherwise known as stickiness—is a technique implemented by

Application Delivery Controllers that ensures requests from a single user are always

distributed to the server on which they started.

Persistence has long been used in load balancing SSL-enabled sites because once

the negotiation process—a compute intensive one—has been completed and keys

exchanged it would significantly degrade performance to start the process again.

Thus, ADCs implemented SSL session persistence to ensure that users were

always directed to the same server to which they first connected.

With the release of Microsoft Internet Explorer 5.01 , SSL persistence was suddenly

rendered inoperable. The browser would automatically renegotiate SSL sessions

every two minutes, necessarily changing the session ID and making it impossible to

persist connections based on the session ID. The "fix" supplied by Microsoft

required changes to the registry, something most burgeoning e-commerce sites

considered a non-viable solution for their customers. It was therefore necessary to

find an alternative solution in order to continue to support persistence. Load

balancing vendors came to the rescue and offered a viable workaround: cookie-

based persistence.

Rather than rely on the SSL session ID, the load balancer would insert a cookie to

uniquely identify the session the first time a client accessed the site and then refer to

that cookie in subsequent requests to persist the connection to the appropriate

server.

The concept of cookie-based persistence has since been applied to application

sessions, using session ID information generated by web and application servers to

ensure that user requests are always directed to the same server during the same

session. Without this capability, applications requiring load balancing would need to

find another way to share session information or resort to increasing session and

connection time outs to the point that the number of servers needed to support its

user base would quickly grow unmanageable.

Although the most common form of persistence is implemented using session IDs

passed in the HTTP header, ADCs today can persist on other pieces of data as well.

Any data that can be stored in a cookie or derived from the IP, TCP, or HTTP

headers can be used to persist a session. In fact, any data within an application

message that uniquely identifies the user can be used by an intelligent ADC to

persist a connection between the browser and a server.

Conclusion
HTTP may be a stateless protocol, but we have managed through the use of

technology to force-fit state into the ubiquitous protocol. Through the use of

persistence and Application Delivery Controllers, it is possible to architect highly

available, performant web applications without breaking the somewhat brittle

integration of cookies and sessions required to maintain state.

These features are what give HTTP state, though its implementation and execution

remains stateless. Without cookies, sessions, and persistence, we surely would

have found a stateful protocol on which to build our applications. Instead, features

and functionality found in Application Delivery Controllers mediate between

browsers (clients) and servers to provide this functionality, extending the useful of

HTTP beyond static web pages to the Rich Internet Applications (RIA) of today.

WHITE PAPER

Cookies, Sessions, and Persistence
®

2

WHITE PAPER

Cookies, Sessions, and Persistence
®



Introduction
HTTP (HyperText Transfer Protocol) was designed to support a stateless, request-

response model of transferring data from a server to a client. Its first version, 1.0,

supported a purely 1:1 request to connection ratio (that is, one request-response

pair was supported per connection).

Its second version, 1.1, expanded that ratio to be N:1—that is, many requests per

connection. This was done in order to address the growing complexity of web

pages, including of the many objects and elements that need to be transferred from

the server to the client.

Somewhere along the line, HTTP became more than just a simple mechanism for

transferring text and images from a server to a client; it became a platform for

applications. The ubiquity of the browser, cross-platform nature, and ease with

which applications could be deployed without the heavy cost of supporting multiple

operating systems and environments was certainly appealing. Unfortunately, HTTP

was not designed to be an application transport protocol. It was designed to

transfer documents. Despite the fact that both documents and application

protocols are generally text-based, the resemblance ends there. Applications require

some way to maintain their state, while documents do not. Applications are built on

logical flows and processes, both of which require that the application know where

the user is during this time, and that requires state. HTTP is stateless, so it seems

obvious that HTTP would not be appropriate for delivering applications. But it has

become the de facto application transport protocol of the web. In what is certainly

one of the most widely accepted, useful hacks in technical history, HTTP was given

the means by which state could be tracked throughout the use of an application.

That "hack" is where sessions and cookies come into play.

Sessions

Transforming the Stateless into the Stateful

Sessions are the way in which web and application servers maintain state. These

simple chunks of memory are associated with every TCP connection made to a web

or application server, and serve as in-memory storage for information in HTTP-based

applications.

When a user connects to a server for the first time, a corresponding session is

created and associated with the connection. Developers then use that session as a

place to store bits of application-relevant data. This data can range from important

information such as a customer ID to less consequential data such as how you like

to see the front page of the site displayed.

The best example of the usefulness of sessions is shopping carts, because nearly all

of us have shopped online at one time or another. Items in a shopping cart remain

over the course of a "session" because every item in your shopping cart is

represented in some way in the session on the server. Another good example is

wizard-style product configuration or customization applications. These "mini"

applications enable you to browse a set of options and select them; at the end, you

are usually shocked by the estimated cost of all the bells and whistles you added. As

you click through each "screen of options," the other options you chose are stored

in the session so they can be easily retrieved, added, or deleted.

The problem is that sessions are tied to connections, and also to connections left

idle for too long time out. Also, the definition of "too long" for connections is quite a

bit different than when it is applied to sessions. The default configuration for

Apache, for example, is to close a connection once it has been idle—that is, no

more requests have been made—for 15 seconds. Conversely, a session in Apache,

by default, will remain in memory for 300 seconds, or 5 minutes. Obviously the two

are at odds with one another, because once the connection times out, what good is

the session if it's associated with the connection?

You might think you could simply increase the connection time-out value to match

the session and address this disparity. Increasing the time-out means that you're

potentially going to expend memory to maintain a connection that may or may not

be used. This can decrease the total concurrent user capacity of your server as well

as ultimately impede its performance. And you certainly don't want to decrease the

session timeout to match the connection time out, because most people take more

than five minutes to shop around or customize their new toy.

Thus, what you end up with is sessions that remain as memory on the server even

after its associated connection has been terminated due to inactivity, chewing up

valuable resources and potentially angering users for whom your application just

doesn't work.

Luckily, this problem is solved through the use of cookies.

Cookies

The Trail of Crumbs Leads Home

Cookies are bits of data stored on the client by the browser. Cookies can, and do,

store all sorts of interesting tidbits about you, your applications, and the sites you

visit. The term "cookie" is derived from "magic cookie," a well-known concept in

UNIX computing that inspired both the idea and the name. Cookies are created and

shared between the browser and the server via the HTTP Header, Cookie.

 Cookie: JSESSIONID=9597856473431 Cache‐Control: no‐cache Host: 127.

0.0.2:8080 Connection: Keep‐Alive

The browser automatically knows it should store the cookie in the HTTP header in a

file on your computer, and it keeps track of cookies on a per domain basis. The

cookies for any given domain are always passed to the server by the browser in the

HTTP headers, so developers of web applications can retrieve those values simply

by asking for them on the server-side of the application.

The way in which the session/connection length problem is solved is through a

cookie. Almost all modern web applications generate a "session ID" and pass it

along as a cookie. This enables the application to find the session on the server

even after the connection from which the session was created is closed. Through

this exchange of session IDs, state is maintained even for a stateless protocol like

HTTP. But what happens when the use of a web application outgrows the capability

of a single web or application server? Usually a load balancer, or in today's

architectures an Application Delivery Controller (ADC), is introduced in order to scale

the application such that all users are satisfied with the availability and performance.

The problem with this is that load balancing algorithms are generally concerned only

with distributing requests across servers. Load balancing techniques are based on

industry standard algorithms like round robin, least connections, or fastest

response time. None of them are stateful, and it is possible for the same user to

have each request made to an application be distributed to a different server. This

makes all the work done to implement state for HTTP useless, because the data

stored in one server's session is rarely shared with other servers in the "web farm."

This is where the concept of persistence comes in handy.

Persistence

The Tie that Binds

Persistence— otherwise known as stickiness—is a technique implemented by

Application Delivery Controllers that ensures requests from a single user are always

distributed to the server on which they started.

Persistence has long been used in load balancing SSL-enabled sites because once

the negotiation process—a compute intensive one—has been completed and keys

exchanged it would significantly degrade performance to start the process again.

Thus, ADCs implemented SSL session persistence to ensure that users were

always directed to the same server to which they first connected.

With the release of Microsoft Internet Explorer 5.01 , SSL persistence was suddenly

rendered inoperable. The browser would automatically renegotiate SSL sessions

every two minutes, necessarily changing the session ID and making it impossible to

persist connections based on the session ID. The "fix" supplied by Microsoft

required changes to the registry, something most burgeoning e-commerce sites

considered a non-viable solution for their customers. It was therefore necessary to

find an alternative solution in order to continue to support persistence. Load

balancing vendors came to the rescue and offered a viable workaround: cookie-

based persistence.

Rather than rely on the SSL session ID, the load balancer would insert a cookie to

uniquely identify the session the first time a client accessed the site and then refer to

that cookie in subsequent requests to persist the connection to the appropriate

server.

The concept of cookie-based persistence has since been applied to application

sessions, using session ID information generated by web and application servers to

ensure that user requests are always directed to the same server during the same

session. Without this capability, applications requiring load balancing would need to

find another way to share session information or resort to increasing session and

connection time outs to the point that the number of servers needed to support its

user base would quickly grow unmanageable.

Although the most common form of persistence is implemented using session IDs

passed in the HTTP header, ADCs today can persist on other pieces of data as well.

Any data that can be stored in a cookie or derived from the IP, TCP, or HTTP

headers can be used to persist a session. In fact, any data within an application

message that uniquely identifies the user can be used by an intelligent ADC to

persist a connection between the browser and a server.

Conclusion
HTTP may be a stateless protocol, but we have managed through the use of

technology to force-fit state into the ubiquitous protocol. Through the use of

persistence and Application Delivery Controllers, it is possible to architect highly

available, performant web applications without breaking the somewhat brittle

integration of cookies and sessions required to maintain state.

These features are what give HTTP state, though its implementation and execution

remains stateless. Without cookies, sessions, and persistence, we surely would

have found a stateful protocol on which to build our applications. Instead, features

and functionality found in Application Delivery Controllers mediate between

browsers (clients) and servers to provide this functionality, extending the useful of

HTTP beyond static web pages to the Rich Internet Applications (RIA) of today.

WHITE PAPER

Cookies, Sessions, and Persistence
®

3

WHITE PAPER

Cookies, Sessions, and Persistence
®



Introduction
HTTP (HyperText Transfer Protocol) was designed to support a stateless, request-

response model of transferring data from a server to a client. Its first version, 1.0,

supported a purely 1:1 request to connection ratio (that is, one request-response

pair was supported per connection).

Its second version, 1.1, expanded that ratio to be N:1—that is, many requests per

connection. This was done in order to address the growing complexity of web

pages, including of the many objects and elements that need to be transferred from

the server to the client.

Somewhere along the line, HTTP became more than just a simple mechanism for

transferring text and images from a server to a client; it became a platform for

applications. The ubiquity of the browser, cross-platform nature, and ease with

which applications could be deployed without the heavy cost of supporting multiple

operating systems and environments was certainly appealing. Unfortunately, HTTP

was not designed to be an application transport protocol. It was designed to

transfer documents. Despite the fact that both documents and application

protocols are generally text-based, the resemblance ends there. Applications require

some way to maintain their state, while documents do not. Applications are built on

logical flows and processes, both of which require that the application know where

the user is during this time, and that requires state. HTTP is stateless, so it seems

obvious that HTTP would not be appropriate for delivering applications. But it has

become the de facto application transport protocol of the web. In what is certainly

one of the most widely accepted, useful hacks in technical history, HTTP was given

the means by which state could be tracked throughout the use of an application.

That "hack" is where sessions and cookies come into play.

Sessions

Transforming the Stateless into the Stateful

Sessions are the way in which web and application servers maintain state. These

simple chunks of memory are associated with every TCP connection made to a web

or application server, and serve as in-memory storage for information in HTTP-based

applications.

When a user connects to a server for the first time, a corresponding session is

created and associated with the connection. Developers then use that session as a

place to store bits of application-relevant data. This data can range from important

information such as a customer ID to less consequential data such as how you like

to see the front page of the site displayed.

The best example of the usefulness of sessions is shopping carts, because nearly all

of us have shopped online at one time or another. Items in a shopping cart remain

over the course of a "session" because every item in your shopping cart is

represented in some way in the session on the server. Another good example is

wizard-style product configuration or customization applications. These "mini"

applications enable you to browse a set of options and select them; at the end, you

are usually shocked by the estimated cost of all the bells and whistles you added. As

you click through each "screen of options," the other options you chose are stored

in the session so they can be easily retrieved, added, or deleted.

The problem is that sessions are tied to connections, and also to connections left

idle for too long time out. Also, the definition of "too long" for connections is quite a

bit different than when it is applied to sessions. The default configuration for

Apache, for example, is to close a connection once it has been idle—that is, no

more requests have been made—for 15 seconds. Conversely, a session in Apache,

by default, will remain in memory for 300 seconds, or 5 minutes. Obviously the two

are at odds with one another, because once the connection times out, what good is

the session if it's associated with the connection?

You might think you could simply increase the connection time-out value to match

the session and address this disparity. Increasing the time-out means that you're

potentially going to expend memory to maintain a connection that may or may not

be used. This can decrease the total concurrent user capacity of your server as well

as ultimately impede its performance. And you certainly don't want to decrease the

session timeout to match the connection time out, because most people take more

than five minutes to shop around or customize their new toy.

Thus, what you end up with is sessions that remain as memory on the server even

after its associated connection has been terminated due to inactivity, chewing up

valuable resources and potentially angering users for whom your application just

doesn't work.

Luckily, this problem is solved through the use of cookies.

Cookies

The Trail of Crumbs Leads Home

Cookies are bits of data stored on the client by the browser. Cookies can, and do,

store all sorts of interesting tidbits about you, your applications, and the sites you

visit. The term "cookie" is derived from "magic cookie," a well-known concept in

UNIX computing that inspired both the idea and the name. Cookies are created and

shared between the browser and the server via the HTTP Header, Cookie.

 Cookie: JSESSIONID=9597856473431 Cache‐Control: no‐cache Host: 127.

0.0.2:8080 Connection: Keep‐Alive

The browser automatically knows it should store the cookie in the HTTP header in a

file on your computer, and it keeps track of cookies on a per domain basis. The

cookies for any given domain are always passed to the server by the browser in the

HTTP headers, so developers of web applications can retrieve those values simply

by asking for them on the server-side of the application.

The way in which the session/connection length problem is solved is through a

cookie. Almost all modern web applications generate a "session ID" and pass it

along as a cookie. This enables the application to find the session on the server

even after the connection from which the session was created is closed. Through

this exchange of session IDs, state is maintained even for a stateless protocol like

HTTP. But what happens when the use of a web application outgrows the capability

of a single web or application server? Usually a load balancer, or in today's

architectures an Application Delivery Controller (ADC), is introduced in order to scale

the application such that all users are satisfied with the availability and performance.

The problem with this is that load balancing algorithms are generally concerned only

with distributing requests across servers. Load balancing techniques are based on

industry standard algorithms like round robin, least connections, or fastest

response time. None of them are stateful, and it is possible for the same user to

have each request made to an application be distributed to a different server. This

makes all the work done to implement state for HTTP useless, because the data

stored in one server's session is rarely shared with other servers in the "web farm."

This is where the concept of persistence comes in handy.

Persistence

The Tie that Binds

Persistence— otherwise known as stickiness—is a technique implemented by

Application Delivery Controllers that ensures requests from a single user are always

distributed to the server on which they started.

Persistence has long been used in load balancing SSL-enabled sites because once

the negotiation process—a compute intensive one—has been completed and keys

exchanged it would significantly degrade performance to start the process again.

Thus, ADCs implemented SSL session persistence to ensure that users were

always directed to the same server to which they first connected.

With the release of Microsoft Internet Explorer 5.01 , SSL persistence was suddenly

rendered inoperable. The browser would automatically renegotiate SSL sessions

every two minutes, necessarily changing the session ID and making it impossible to

persist connections based on the session ID. The "fix" supplied by Microsoft

required changes to the registry, something most burgeoning e-commerce sites

considered a non-viable solution for their customers. It was therefore necessary to

find an alternative solution in order to continue to support persistence. Load

balancing vendors came to the rescue and offered a viable workaround: cookie-

based persistence.

Rather than rely on the SSL session ID, the load balancer would insert a cookie to

uniquely identify the session the first time a client accessed the site and then refer to

that cookie in subsequent requests to persist the connection to the appropriate

server.

The concept of cookie-based persistence has since been applied to application

sessions, using session ID information generated by web and application servers to

ensure that user requests are always directed to the same server during the same

session. Without this capability, applications requiring load balancing would need to

find another way to share session information or resort to increasing session and

connection time outs to the point that the number of servers needed to support its

user base would quickly grow unmanageable.

Although the most common form of persistence is implemented using session IDs

passed in the HTTP header, ADCs today can persist on other pieces of data as well.

Any data that can be stored in a cookie or derived from the IP, TCP, or HTTP

headers can be used to persist a session. In fact, any data within an application

message that uniquely identifies the user can be used by an intelligent ADC to

persist a connection between the browser and a server.

Conclusion
HTTP may be a stateless protocol, but we have managed through the use of

technology to force-fit state into the ubiquitous protocol. Through the use of

persistence and Application Delivery Controllers, it is possible to architect highly

available, performant web applications without breaking the somewhat brittle

integration of cookies and sessions required to maintain state.

These features are what give HTTP state, though its implementation and execution

remains stateless. Without cookies, sessions, and persistence, we surely would

have found a stateful protocol on which to build our applications. Instead, features

and functionality found in Application Delivery Controllers mediate between

browsers (clients) and servers to provide this functionality, extending the useful of

HTTP beyond static web pages to the Rich Internet Applications (RIA) of today.

WHITE PAPER

Cookies, Sessions, and Persistence
®

4

WHITE PAPER

Cookies, Sessions, and Persistence
®



Introduction
HTTP (HyperText Transfer Protocol) was designed to support a stateless, request-

response model of transferring data from a server to a client. Its first version, 1.0,

supported a purely 1:1 request to connection ratio (that is, one request-response

pair was supported per connection).

Its second version, 1.1, expanded that ratio to be N:1—that is, many requests per

connection. This was done in order to address the growing complexity of web

pages, including of the many objects and elements that need to be transferred from

the server to the client.

Somewhere along the line, HTTP became more than just a simple mechanism for

transferring text and images from a server to a client; it became a platform for

applications. The ubiquity of the browser, cross-platform nature, and ease with

which applications could be deployed without the heavy cost of supporting multiple

operating systems and environments was certainly appealing. Unfortunately, HTTP

was not designed to be an application transport protocol. It was designed to

transfer documents. Despite the fact that both documents and application

protocols are generally text-based, the resemblance ends there. Applications require

some way to maintain their state, while documents do not. Applications are built on

logical flows and processes, both of which require that the application know where

the user is during this time, and that requires state. HTTP is stateless, so it seems

obvious that HTTP would not be appropriate for delivering applications. But it has

become the de facto application transport protocol of the web. In what is certainly

one of the most widely accepted, useful hacks in technical history, HTTP was given

the means by which state could be tracked throughout the use of an application.

That "hack" is where sessions and cookies come into play.

Sessions

Transforming the Stateless into the Stateful

Sessions are the way in which web and application servers maintain state. These

simple chunks of memory are associated with every TCP connection made to a web

or application server, and serve as in-memory storage for information in HTTP-based

applications.

When a user connects to a server for the first time, a corresponding session is

created and associated with the connection. Developers then use that session as a

place to store bits of application-relevant data. This data can range from important

information such as a customer ID to less consequential data such as how you like

to see the front page of the site displayed.

The best example of the usefulness of sessions is shopping carts, because nearly all

of us have shopped online at one time or another. Items in a shopping cart remain

over the course of a "session" because every item in your shopping cart is

represented in some way in the session on the server. Another good example is

wizard-style product configuration or customization applications. These "mini"

applications enable you to browse a set of options and select them; at the end, you

are usually shocked by the estimated cost of all the bells and whistles you added. As

you click through each "screen of options," the other options you chose are stored

in the session so they can be easily retrieved, added, or deleted.

The problem is that sessions are tied to connections, and also to connections left

idle for too long time out. Also, the definition of "too long" for connections is quite a

bit different than when it is applied to sessions. The default configuration for

Apache, for example, is to close a connection once it has been idle—that is, no

more requests have been made—for 15 seconds. Conversely, a session in Apache,

by default, will remain in memory for 300 seconds, or 5 minutes. Obviously the two

are at odds with one another, because once the connection times out, what good is

the session if it's associated with the connection?

You might think you could simply increase the connection time-out value to match

the session and address this disparity. Increasing the time-out means that you're

potentially going to expend memory to maintain a connection that may or may not

be used. This can decrease the total concurrent user capacity of your server as well

as ultimately impede its performance. And you certainly don't want to decrease the

session timeout to match the connection time out, because most people take more

than five minutes to shop around or customize their new toy.

Thus, what you end up with is sessions that remain as memory on the server even

after its associated connection has been terminated due to inactivity, chewing up

valuable resources and potentially angering users for whom your application just

doesn't work.

Luckily, this problem is solved through the use of cookies.

Cookies

The Trail of Crumbs Leads Home

Cookies are bits of data stored on the client by the browser. Cookies can, and do,

store all sorts of interesting tidbits about you, your applications, and the sites you

visit. The term "cookie" is derived from "magic cookie," a well-known concept in

UNIX computing that inspired both the idea and the name. Cookies are created and

shared between the browser and the server via the HTTP Header, Cookie.

 Cookie: JSESSIONID=9597856473431 Cache‐Control: no‐cache Host: 127.

0.0.2:8080 Connection: Keep‐Alive

The browser automatically knows it should store the cookie in the HTTP header in a

file on your computer, and it keeps track of cookies on a per domain basis. The

cookies for any given domain are always passed to the server by the browser in the

HTTP headers, so developers of web applications can retrieve those values simply

by asking for them on the server-side of the application.

The way in which the session/connection length problem is solved is through a

cookie. Almost all modern web applications generate a "session ID" and pass it

along as a cookie. This enables the application to find the session on the server

even after the connection from which the session was created is closed. Through

this exchange of session IDs, state is maintained even for a stateless protocol like

HTTP. But what happens when the use of a web application outgrows the capability

of a single web or application server? Usually a load balancer, or in today's

architectures an Application Delivery Controller (ADC), is introduced in order to scale

the application such that all users are satisfied with the availability and performance.

The problem with this is that load balancing algorithms are generally concerned only

with distributing requests across servers. Load balancing techniques are based on

industry standard algorithms like round robin, least connections, or fastest

response time. None of them are stateful, and it is possible for the same user to

have each request made to an application be distributed to a different server. This

makes all the work done to implement state for HTTP useless, because the data

stored in one server's session is rarely shared with other servers in the "web farm."

This is where the concept of persistence comes in handy.

Persistence

The Tie that Binds

Persistence— otherwise known as stickiness—is a technique implemented by

Application Delivery Controllers that ensures requests from a single user are always

distributed to the server on which they started.

Persistence has long been used in load balancing SSL-enabled sites because once

the negotiation process—a compute intensive one—has been completed and keys

exchanged it would significantly degrade performance to start the process again.

Thus, ADCs implemented SSL session persistence to ensure that users were

always directed to the same server to which they first connected.

With the release of Microsoft Internet Explorer 5.01 , SSL persistence was suddenly

rendered inoperable. The browser would automatically renegotiate SSL sessions

every two minutes, necessarily changing the session ID and making it impossible to

persist connections based on the session ID. The "fix" supplied by Microsoft

required changes to the registry, something most burgeoning e-commerce sites

considered a non-viable solution for their customers. It was therefore necessary to

find an alternative solution in order to continue to support persistence. Load

balancing vendors came to the rescue and offered a viable workaround: cookie-

based persistence.

Rather than rely on the SSL session ID, the load balancer would insert a cookie to

uniquely identify the session the first time a client accessed the site and then refer to

that cookie in subsequent requests to persist the connection to the appropriate

server.

The concept of cookie-based persistence has since been applied to application

sessions, using session ID information generated by web and application servers to

ensure that user requests are always directed to the same server during the same

session. Without this capability, applications requiring load balancing would need to

find another way to share session information or resort to increasing session and

connection time outs to the point that the number of servers needed to support its

user base would quickly grow unmanageable.

Although the most common form of persistence is implemented using session IDs

passed in the HTTP header, ADCs today can persist on other pieces of data as well.

Any data that can be stored in a cookie or derived from the IP, TCP, or HTTP

headers can be used to persist a session. In fact, any data within an application

message that uniquely identifies the user can be used by an intelligent ADC to

persist a connection between the browser and a server.

Conclusion
HTTP may be a stateless protocol, but we have managed through the use of

technology to force-fit state into the ubiquitous protocol. Through the use of

persistence and Application Delivery Controllers, it is possible to architect highly

available, performant web applications without breaking the somewhat brittle

integration of cookies and sessions required to maintain state.

These features are what give HTTP state, though its implementation and execution

remains stateless. Without cookies, sessions, and persistence, we surely would

have found a stateful protocol on which to build our applications. Instead, features

and functionality found in Application Delivery Controllers mediate between

browsers (clients) and servers to provide this functionality, extending the useful of

HTTP beyond static web pages to the Rich Internet Applications (RIA) of today.

WHITE PAPER

Cookies, Sessions, and Persistence
®

5

F5 Networks, Inc.
401 Elliott Avenue West, Seattle, WA 98119
888-882-4447 www.f5.com

Americas
info@f5.com

Asia-Pacific
apacinfo@f5.com

Europe/Middle-East/Africa
emeainfo@f5.com

Japan
f5j-info@f5.com

©2015 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or
affiliation, express or implied, claimed by F5. WP-COOKIES-SESSIONS-PERSISTENCE 0113

WHITE PAPER

Cookies, Sessions, and Persistence
®


