
Fundamentals of HTTP
Fundamentals of HTTP

White Paper

by Patrick Chang



•
•
•
•
•

•
•

•

•

•

TCP controls many

performance-related aspects of

web applications and is often

not manageable by developers

or network administrators.

Affecting performance by

modifying TCP parameters may

require the assistance of

application delivery controllers

or web acceleration solutions,

or changing settings in the

operating system itself.

Modern browsers render

content as it is retrieved, known

as progressive rendering,

except in the case of Internet

Explorer (IE) and table objects.

IE will wait for the entire table

object to be retrieved before

rendering it to the page, which

can cause IE to appear to be

"slow" when opening a web

page. This can often be

remedied by adding table-

layout:fixed to the style applied

to the table in question.

F5's BIG-IP WebAccelerator

employs a set of technologies

collectively called Intelligent

Browser Referencing (IBR) that

make the use of the browser's

cache and TCP connections

more efficient, often dramatically

improving end-user

performance.

F5 BIG-IP Local Traffic Manager

can act as a cookie gateway

and perform cookie

encryption/decryption. It can

also improve the performance of

encryption/decryption for

cookies as well as secure traffic

(HTTPS) due to acceleration

technology.

Understanding HTTP and how these headers control behavior of web-based

applications can lead to better end-user performance, as well as making it easier to

choose an application acceleration solution that addresses the shortcomings of

HTTP and browser-based solutions.

HTTP (Hypertext Transfer Protocol) is one of the most ubiquitous protocols on the

Internet. It is also one of the few protocols that bridges the gap between networking

and application development groups, containing information that is used by both in

the delivery and development of web-based applications.

The inner workings of HTTP, particularly the headers used by the client and the

server to exchange information regarding state and capabilities, often have an

impact on the performance of web-based applications. Understanding HTTP and

how these headers control behavior of web-based applications can lead to better

end-user performance, as well as making it easier to choose an application

acceleration solution that addresses the shortcomings of HTTP and browser-based

solutions.

GETting a Web Page
When you open up a browser and request a web page (either by setting a default

page or by entering a Uniform Resource Locater or URL), the first thing that

happens is that the browser relies upon the operating system to resolve the host

name in the URL to an IP address. Normally this is done via a DNS (Domain Name

System) query over UDP (User Datagram Protocol) on port 53. However, if the host

is listed in the local hosts file, the operating system will not make a DNS query.

When the IP address is obtained, the browser will attempt to open a TCP

(Transmission Control Protocol) connection to the web server, usually on port 80.

Once the TCP connection is made, the browser will issue an HTTP request to the

server using the connection. The request comprises a header section, and possibly

a body section (this is where things like POST data go). Once the request is sent,

the browser will wait for the response. When the web server has assembled the

response, it is sent back to the browser for rendering.

The base request comprises a method, the URI (Uniform Resource Indicator) of the

web page or resource being requested, and the HTTP version desired (1.0 or 1.1).

The method may be one of:

Get
Post
Put
Delete
Head

GET and POST are almost universally supported by web servers, with the difference

between them being the way in which query parameters are represented. With the

GET method, all query parameters are part of the URI. This restricts the length of the

parameters because a URI is generally limited to a set number of characters.

Conversely, all parameters are included within the body of the request when using

the POST method and there is usually no limit on the length of the body. PUT and

DELETE, though considered important for emerging technology architectures such

as REST (Representational State Transfer), are considered potentially dangerous as

they enable the user to modify resources on the web server. These methods are

generally disabled on web servers and not supported by modern web browsers.

The HTTP response consists of a header section and a body. The header section

tells the browser how to treat the body content and the browser renders the

content for viewing. Each HTTP response includes a status code, which indicates

the status of the request. The most common status codes are:

200 OK. This indicates success
304 Not Modified. This shows that the resource in question has not changed
and the browser should load it from its cache instead. This is only used when
the browser performs a conditional GET request.
404 Not Found. This suggests that the resource requested cannot be found
on the server.
401 Authorization Required. This indicates that the resource is protected and
requires valid credentials before the server can grant access.
500 Internal Error. This signifies that the server had a problem processing the
request.

While most developers do not need to know these status codes as they are not

used within D/HTML, AJAX (Asynchronous Javascript and XML) developers may

need to recognize these codes as part of their development efforts.

Most HTTP responses will also contain references to other objects within the body

that will cause the browser to automatically request these objects as well. Web

pages often contain more than 30 other object references required to complete the

page.

When retrieving these referenced objects, the default browser behavior is to open

two TCP connections per host seen in the references. With Internet Explorer there

is a Windows registry setting that limits this to a total of eight TCP connections.

There is a similar setting in Firefox, but its maximum is 24 TCP connections.

HTTP Headers
HTTP headers carry information about behavior and application state between the

browser and the server. These headers can be modified and examined by the

browser and the server, as well as intermediary devices such as web acceleration

solutions and application delivery controllers. The headers sent by the browser

notify the web server of the browser's capabilities. The headers sent by the web

server tell the browser how to treat the content.

The most important browser headers, in terms of end-user performance, are:

1. HTTP version (HTTP/1.0 or HTTP/1.1)

2. Accept-Encoding: gzip, deflate

3. Connection: Keep-Alive

4. If-* headers

5. Cache-Control or Pragma no-cache

The first three items are interrelated. HTTP 1.0 does not include compression–

indicated by the Accept-Encoding: gzip, deflate header, or connection keep-alives.

Compression can reduce the byte count of text by 6:1 to 8:1. This often translates

into a 40-50 percent reduction in size for a page. Connection: Keep-Alive will reuse

TCP connections for subsequent requests and will save on the latency incurred by

the 3-way hand-shake, and 4-way tear-down required for TCP connections on

every request. Keeping connections open is important in emerging web-based

applications that utilize Web 2.0 technology such as AJAX (Asynchronous

JavaScript and XML) to perform real-time updates of content because it reduces the

overhead associated with opening and closing TCP connections.

The various If-* headers, such as If-Modified-Since, will enable the web server to

send a response that indicates the content has not been modified if this is true. This

can potentially turn a 200KB download into a 1KB download, as the browser will

respond to the 304 Not Modified response by loading the referenced content from

the browser's cache. However, a lot of If-* requests for static content can result in

unnecessary round trips. This can really slow end-user performance. The no-cache

header and its relatives—no-store, private, must-revalidate, and proxy-revalidate—

request that proxies and, sometimes, web servers not cache the response to the

request. Honoring those requests can cause the servers to do a lot more work

because they must always return the full content rather than enable the browser to

use a cached version.

The most important web server headers, in terms of end-user performance, are:

1. The HTTP version (either HTTP/1.0 or HTTP/1.1) at the beginning of the

status line

2. Connection: Keep-Alive/Close

3. Encoding: gzip, deflate

4. The various cache-control headers, especially max-age

5. Content-Type:

6. Date:

7. Accept-Ranges: bytes

Again, the first three items are inter-related and are meant to impart the same

information as when sent by the browser. The cache-control headers are very

important because they can be used to store items in the browser cache and avoid

future HTTP requests altogether. However, using cached data runs the risk of using

out-dated data if the content changes before the cached object expires. Content-

type is important for telling the browser how to handle the object. This is most

important for content that the browser hands off to plug-ins (Flash, Microsoft Office

documents, etc.). It is also the biggest clue to the true function of that object in the

web application. Improper content types will often result in slower, but not broken

web applications. The Date header is very important because it affects how the

browser interprets the cache-control headers. It is important to make sure the date

on the server is set correctly so that this field is accurate. The Accept-Ranges

header is only important when downloading PDF documents. It enables the

browser to know that it can request the PDF document one page at a time.

Cookies
Cookies are sent by the web server to the browser as an HTTP header and used to

store all sorts of information about a user’s interaction with the site. Generally

speaking the use of cookies will not affect the performance of an application, unless

they are encrypted for security purposes. The reason encrypted cookies can affect

performance is because the web server needs to decrypt them before use, and the

encryption/decryption process is resource intensive. The more encrypted cookies

that are used by a site, the longer it takes for the web server to process them into a

readable format.

Meta Tags
The HTML standard allows the inclusion of meta tags within the HEAD element of

an HTML page. There are two types of meta tags: HTTP-EQUIV and NAME. HTTP-

EQUIV meta tags are equivalent to HTTP headers. These meta tags can conflict

with–and even contradict—the HTTP headers sent by the browser or web server.

This is problematic because meta tags will take precedence. In many cases, HTML

coders will use meta tags to provide web page functionality without realizing what

the meta tags do to the inner workings of the browser such as cache behavior. The

two meta tags that cause the most problems with web application performance are

the no-cache and refresh tags. The no-cache tag instructs the browser to not

cache the object that contains the meta tag. This forces the browser to always get a

full download of that object, even if it has not changed. The refresh tag is often used

to mimic an HTTP 302 redirect response. The problem is that the refresh tag tells

the browser to override the browser's cache settings and revalidate every object

referenced by the refresh tag.

Conclusion
There are many more headers and settings involved in HTTP, but these are the ones

that can affect the performance of HTTP the most. Being aware of how HTTP and

its headers interact between the browser and the server can not only help

developers and network professionals improve the end-user experience, it can also

provide invaluable information when troubleshooting particularly slow sites and

applications.

Web application acceleration solutions can also act to improve the end-user

experience by using the many HTTP headers and browser options available to

ensure optimal performance. These solutions are often preferred over making

changes to the application itself because they are less invasive and include

additional protocol layer (TCP) enhancements and optimizations that improve the

overall delivery of applications.

1

WHITE PAPER

Fundamentals of HTTP
®



•
•
•
•
•

•
•

•

•

•

TCP controls many

performance-related aspects of

web applications and is often

not manageable by developers

or network administrators.

Affecting performance by

modifying TCP parameters may

require the assistance of

application delivery controllers

or web acceleration solutions,

or changing settings in the

operating system itself.

Modern browsers render

content as it is retrieved, known

as progressive rendering,

except in the case of Internet

Explorer (IE) and table objects.

IE will wait for the entire table

object to be retrieved before

rendering it to the page, which

can cause IE to appear to be

"slow" when opening a web

page. This can often be

remedied by adding table-

layout:fixed to the style applied

to the table in question.

F5's BIG-IP WebAccelerator

employs a set of technologies

collectively called Intelligent

Browser Referencing (IBR) that

make the use of the browser's

cache and TCP connections

more efficient, often dramatically

improving end-user

performance.

F5 BIG-IP Local Traffic Manager

can act as a cookie gateway

and perform cookie

encryption/decryption. It can

also improve the performance of

encryption/decryption for

cookies as well as secure traffic

(HTTPS) due to acceleration

technology.

Understanding HTTP and how these headers control behavior of web-based

applications can lead to better end-user performance, as well as making it easier to

choose an application acceleration solution that addresses the shortcomings of

HTTP and browser-based solutions.

HTTP (Hypertext Transfer Protocol) is one of the most ubiquitous protocols on the

Internet. It is also one of the few protocols that bridges the gap between networking

and application development groups, containing information that is used by both in

the delivery and development of web-based applications.

The inner workings of HTTP, particularly the headers used by the client and the

server to exchange information regarding state and capabilities, often have an

impact on the performance of web-based applications. Understanding HTTP and

how these headers control behavior of web-based applications can lead to better

end-user performance, as well as making it easier to choose an application

acceleration solution that addresses the shortcomings of HTTP and browser-based

solutions.

GETting a Web Page
When you open up a browser and request a web page (either by setting a default

page or by entering a Uniform Resource Locater or URL), the first thing that

happens is that the browser relies upon the operating system to resolve the host

name in the URL to an IP address. Normally this is done via a DNS (Domain Name

System) query over UDP (User Datagram Protocol) on port 53. However, if the host

is listed in the local hosts file, the operating system will not make a DNS query.

When the IP address is obtained, the browser will attempt to open a TCP

(Transmission Control Protocol) connection to the web server, usually on port 80.

Once the TCP connection is made, the browser will issue an HTTP request to the

server using the connection. The request comprises a header section, and possibly

a body section (this is where things like POST data go). Once the request is sent,

the browser will wait for the response. When the web server has assembled the

response, it is sent back to the browser for rendering.

The base request comprises a method, the URI (Uniform Resource Indicator) of the

web page or resource being requested, and the HTTP version desired (1.0 or 1.1).

The method may be one of:

Get
Post
Put
Delete
Head

GET and POST are almost universally supported by web servers, with the difference

between them being the way in which query parameters are represented. With the

GET method, all query parameters are part of the URI. This restricts the length of the

parameters because a URI is generally limited to a set number of characters.

Conversely, all parameters are included within the body of the request when using

the POST method and there is usually no limit on the length of the body. PUT and

DELETE, though considered important for emerging technology architectures such

as REST (Representational State Transfer), are considered potentially dangerous as

they enable the user to modify resources on the web server. These methods are

generally disabled on web servers and not supported by modern web browsers.

The HTTP response consists of a header section and a body. The header section

tells the browser how to treat the body content and the browser renders the

content for viewing. Each HTTP response includes a status code, which indicates

the status of the request. The most common status codes are:

200 OK. This indicates success
304 Not Modified. This shows that the resource in question has not changed
and the browser should load it from its cache instead. This is only used when
the browser performs a conditional GET request.
404 Not Found. This suggests that the resource requested cannot be found
on the server.
401 Authorization Required. This indicates that the resource is protected and
requires valid credentials before the server can grant access.
500 Internal Error. This signifies that the server had a problem processing the
request.

While most developers do not need to know these status codes as they are not

used within D/HTML, AJAX (Asynchronous Javascript and XML) developers may

need to recognize these codes as part of their development efforts.

Most HTTP responses will also contain references to other objects within the body

that will cause the browser to automatically request these objects as well. Web

pages often contain more than 30 other object references required to complete the

page.

When retrieving these referenced objects, the default browser behavior is to open

two TCP connections per host seen in the references. With Internet Explorer there

is a Windows registry setting that limits this to a total of eight TCP connections.

There is a similar setting in Firefox, but its maximum is 24 TCP connections.

HTTP Headers
HTTP headers carry information about behavior and application state between the

browser and the server. These headers can be modified and examined by the

browser and the server, as well as intermediary devices such as web acceleration

solutions and application delivery controllers. The headers sent by the browser

notify the web server of the browser's capabilities. The headers sent by the web

server tell the browser how to treat the content.

The most important browser headers, in terms of end-user performance, are:

1. HTTP version (HTTP/1.0 or HTTP/1.1)

2. Accept-Encoding: gzip, deflate

3. Connection: Keep-Alive

4. If-* headers

5. Cache-Control or Pragma no-cache

The first three items are interrelated. HTTP 1.0 does not include compression–

indicated by the Accept-Encoding: gzip, deflate header, or connection keep-alives.

Compression can reduce the byte count of text by 6:1 to 8:1. This often translates

into a 40-50 percent reduction in size for a page. Connection: Keep-Alive will reuse

TCP connections for subsequent requests and will save on the latency incurred by

the 3-way hand-shake, and 4-way tear-down required for TCP connections on

every request. Keeping connections open is important in emerging web-based

applications that utilize Web 2.0 technology such as AJAX (Asynchronous

JavaScript and XML) to perform real-time updates of content because it reduces the

overhead associated with opening and closing TCP connections.

The various If-* headers, such as If-Modified-Since, will enable the web server to

send a response that indicates the content has not been modified if this is true. This

can potentially turn a 200KB download into a 1KB download, as the browser will

respond to the 304 Not Modified response by loading the referenced content from

the browser's cache. However, a lot of If-* requests for static content can result in

unnecessary round trips. This can really slow end-user performance. The no-cache

header and its relatives—no-store, private, must-revalidate, and proxy-revalidate—

request that proxies and, sometimes, web servers not cache the response to the

request. Honoring those requests can cause the servers to do a lot more work

because they must always return the full content rather than enable the browser to

use a cached version.

The most important web server headers, in terms of end-user performance, are:

1. The HTTP version (either HTTP/1.0 or HTTP/1.1) at the beginning of the

status line

2. Connection: Keep-Alive/Close

3. Encoding: gzip, deflate

4. The various cache-control headers, especially max-age

5. Content-Type:

6. Date:

7. Accept-Ranges: bytes

Again, the first three items are inter-related and are meant to impart the same

information as when sent by the browser. The cache-control headers are very

important because they can be used to store items in the browser cache and avoid

future HTTP requests altogether. However, using cached data runs the risk of using

out-dated data if the content changes before the cached object expires. Content-

type is important for telling the browser how to handle the object. This is most

important for content that the browser hands off to plug-ins (Flash, Microsoft Office

documents, etc.). It is also the biggest clue to the true function of that object in the

web application. Improper content types will often result in slower, but not broken

web applications. The Date header is very important because it affects how the

browser interprets the cache-control headers. It is important to make sure the date

on the server is set correctly so that this field is accurate. The Accept-Ranges

header is only important when downloading PDF documents. It enables the

browser to know that it can request the PDF document one page at a time.

Cookies
Cookies are sent by the web server to the browser as an HTTP header and used to

store all sorts of information about a user’s interaction with the site. Generally

speaking the use of cookies will not affect the performance of an application, unless

they are encrypted for security purposes. The reason encrypted cookies can affect

performance is because the web server needs to decrypt them before use, and the

encryption/decryption process is resource intensive. The more encrypted cookies

that are used by a site, the longer it takes for the web server to process them into a

readable format.

Meta Tags
The HTML standard allows the inclusion of meta tags within the HEAD element of

an HTML page. There are two types of meta tags: HTTP-EQUIV and NAME. HTTP-

EQUIV meta tags are equivalent to HTTP headers. These meta tags can conflict

with–and even contradict—the HTTP headers sent by the browser or web server.

This is problematic because meta tags will take precedence. In many cases, HTML

coders will use meta tags to provide web page functionality without realizing what

the meta tags do to the inner workings of the browser such as cache behavior. The

two meta tags that cause the most problems with web application performance are

the no-cache and refresh tags. The no-cache tag instructs the browser to not

cache the object that contains the meta tag. This forces the browser to always get a

full download of that object, even if it has not changed. The refresh tag is often used

to mimic an HTTP 302 redirect response. The problem is that the refresh tag tells

the browser to override the browser's cache settings and revalidate every object

referenced by the refresh tag.

Conclusion
There are many more headers and settings involved in HTTP, but these are the ones

that can affect the performance of HTTP the most. Being aware of how HTTP and

its headers interact between the browser and the server can not only help

developers and network professionals improve the end-user experience, it can also

provide invaluable information when troubleshooting particularly slow sites and

applications.

Web application acceleration solutions can also act to improve the end-user

experience by using the many HTTP headers and browser options available to

ensure optimal performance. These solutions are often preferred over making

changes to the application itself because they are less invasive and include

additional protocol layer (TCP) enhancements and optimizations that improve the

overall delivery of applications.

WHITE PAPER

Fundamentals of HTTP
®

2

WHITE PAPER

Fundamentals of HTTP
®



•
•
•
•
•

•
•

•

•

•

TCP controls many

performance-related aspects of

web applications and is often

not manageable by developers

or network administrators.

Affecting performance by

modifying TCP parameters may

require the assistance of

application delivery controllers

or web acceleration solutions,

or changing settings in the

operating system itself.

Modern browsers render

content as it is retrieved, known

as progressive rendering,

except in the case of Internet

Explorer (IE) and table objects.

IE will wait for the entire table

object to be retrieved before

rendering it to the page, which

can cause IE to appear to be

"slow" when opening a web

page. This can often be

remedied by adding table-

layout:fixed to the style applied

to the table in question.

F5's BIG-IP WebAccelerator

employs a set of technologies

collectively called Intelligent

Browser Referencing (IBR) that

make the use of the browser's

cache and TCP connections

more efficient, often dramatically

improving end-user

performance.

F5 BIG-IP Local Traffic Manager

can act as a cookie gateway

and perform cookie

encryption/decryption. It can

also improve the performance of

encryption/decryption for

cookies as well as secure traffic

(HTTPS) due to acceleration

technology.

Understanding HTTP and how these headers control behavior of web-based

applications can lead to better end-user performance, as well as making it easier to

choose an application acceleration solution that addresses the shortcomings of

HTTP and browser-based solutions.

HTTP (Hypertext Transfer Protocol) is one of the most ubiquitous protocols on the

Internet. It is also one of the few protocols that bridges the gap between networking

and application development groups, containing information that is used by both in

the delivery and development of web-based applications.

The inner workings of HTTP, particularly the headers used by the client and the

server to exchange information regarding state and capabilities, often have an

impact on the performance of web-based applications. Understanding HTTP and

how these headers control behavior of web-based applications can lead to better

end-user performance, as well as making it easier to choose an application

acceleration solution that addresses the shortcomings of HTTP and browser-based

solutions.

GETting a Web Page
When you open up a browser and request a web page (either by setting a default

page or by entering a Uniform Resource Locater or URL), the first thing that

happens is that the browser relies upon the operating system to resolve the host

name in the URL to an IP address. Normally this is done via a DNS (Domain Name

System) query over UDP (User Datagram Protocol) on port 53. However, if the host

is listed in the local hosts file, the operating system will not make a DNS query.

When the IP address is obtained, the browser will attempt to open a TCP

(Transmission Control Protocol) connection to the web server, usually on port 80.

Once the TCP connection is made, the browser will issue an HTTP request to the

server using the connection. The request comprises a header section, and possibly

a body section (this is where things like POST data go). Once the request is sent,

the browser will wait for the response. When the web server has assembled the

response, it is sent back to the browser for rendering.

The base request comprises a method, the URI (Uniform Resource Indicator) of the

web page or resource being requested, and the HTTP version desired (1.0 or 1.1).

The method may be one of:

Get
Post
Put
Delete
Head

GET and POST are almost universally supported by web servers, with the difference

between them being the way in which query parameters are represented. With the

GET method, all query parameters are part of the URI. This restricts the length of the

parameters because a URI is generally limited to a set number of characters.

Conversely, all parameters are included within the body of the request when using

the POST method and there is usually no limit on the length of the body. PUT and

DELETE, though considered important for emerging technology architectures such

as REST (Representational State Transfer), are considered potentially dangerous as

they enable the user to modify resources on the web server. These methods are

generally disabled on web servers and not supported by modern web browsers.

The HTTP response consists of a header section and a body. The header section

tells the browser how to treat the body content and the browser renders the

content for viewing. Each HTTP response includes a status code, which indicates

the status of the request. The most common status codes are:

200 OK. This indicates success
304 Not Modified. This shows that the resource in question has not changed
and the browser should load it from its cache instead. This is only used when
the browser performs a conditional GET request.
404 Not Found. This suggests that the resource requested cannot be found
on the server.
401 Authorization Required. This indicates that the resource is protected and
requires valid credentials before the server can grant access.
500 Internal Error. This signifies that the server had a problem processing the
request.

While most developers do not need to know these status codes as they are not

used within D/HTML, AJAX (Asynchronous Javascript and XML) developers may

need to recognize these codes as part of their development efforts.

Most HTTP responses will also contain references to other objects within the body

that will cause the browser to automatically request these objects as well. Web

pages often contain more than 30 other object references required to complete the

page.

When retrieving these referenced objects, the default browser behavior is to open

two TCP connections per host seen in the references. With Internet Explorer there

is a Windows registry setting that limits this to a total of eight TCP connections.

There is a similar setting in Firefox, but its maximum is 24 TCP connections.

HTTP Headers
HTTP headers carry information about behavior and application state between the

browser and the server. These headers can be modified and examined by the

browser and the server, as well as intermediary devices such as web acceleration

solutions and application delivery controllers. The headers sent by the browser

notify the web server of the browser's capabilities. The headers sent by the web

server tell the browser how to treat the content.

The most important browser headers, in terms of end-user performance, are:

1. HTTP version (HTTP/1.0 or HTTP/1.1)

2. Accept-Encoding: gzip, deflate

3. Connection: Keep-Alive

4. If-* headers

5. Cache-Control or Pragma no-cache

The first three items are interrelated. HTTP 1.0 does not include compression–

indicated by the Accept-Encoding: gzip, deflate header, or connection keep-alives.

Compression can reduce the byte count of text by 6:1 to 8:1. This often translates

into a 40-50 percent reduction in size for a page. Connection: Keep-Alive will reuse

TCP connections for subsequent requests and will save on the latency incurred by

the 3-way hand-shake, and 4-way tear-down required for TCP connections on

every request. Keeping connections open is important in emerging web-based

applications that utilize Web 2.0 technology such as AJAX (Asynchronous

JavaScript and XML) to perform real-time updates of content because it reduces the

overhead associated with opening and closing TCP connections.

The various If-* headers, such as If-Modified-Since, will enable the web server to

send a response that indicates the content has not been modified if this is true. This

can potentially turn a 200KB download into a 1KB download, as the browser will

respond to the 304 Not Modified response by loading the referenced content from

the browser's cache. However, a lot of If-* requests for static content can result in

unnecessary round trips. This can really slow end-user performance. The no-cache

header and its relatives—no-store, private, must-revalidate, and proxy-revalidate—

request that proxies and, sometimes, web servers not cache the response to the

request. Honoring those requests can cause the servers to do a lot more work

because they must always return the full content rather than enable the browser to

use a cached version.

The most important web server headers, in terms of end-user performance, are:

1. The HTTP version (either HTTP/1.0 or HTTP/1.1) at the beginning of the

status line

2. Connection: Keep-Alive/Close

3. Encoding: gzip, deflate

4. The various cache-control headers, especially max-age

5. Content-Type:

6. Date:

7. Accept-Ranges: bytes

Again, the first three items are inter-related and are meant to impart the same

information as when sent by the browser. The cache-control headers are very

important because they can be used to store items in the browser cache and avoid

future HTTP requests altogether. However, using cached data runs the risk of using

out-dated data if the content changes before the cached object expires. Content-

type is important for telling the browser how to handle the object. This is most

important for content that the browser hands off to plug-ins (Flash, Microsoft Office

documents, etc.). It is also the biggest clue to the true function of that object in the

web application. Improper content types will often result in slower, but not broken

web applications. The Date header is very important because it affects how the

browser interprets the cache-control headers. It is important to make sure the date

on the server is set correctly so that this field is accurate. The Accept-Ranges

header is only important when downloading PDF documents. It enables the

browser to know that it can request the PDF document one page at a time.

Cookies
Cookies are sent by the web server to the browser as an HTTP header and used to

store all sorts of information about a user’s interaction with the site. Generally

speaking the use of cookies will not affect the performance of an application, unless

they are encrypted for security purposes. The reason encrypted cookies can affect

performance is because the web server needs to decrypt them before use, and the

encryption/decryption process is resource intensive. The more encrypted cookies

that are used by a site, the longer it takes for the web server to process them into a

readable format.

Meta Tags
The HTML standard allows the inclusion of meta tags within the HEAD element of

an HTML page. There are two types of meta tags: HTTP-EQUIV and NAME. HTTP-

EQUIV meta tags are equivalent to HTTP headers. These meta tags can conflict

with–and even contradict—the HTTP headers sent by the browser or web server.

This is problematic because meta tags will take precedence. In many cases, HTML

coders will use meta tags to provide web page functionality without realizing what

the meta tags do to the inner workings of the browser such as cache behavior. The

two meta tags that cause the most problems with web application performance are

the no-cache and refresh tags. The no-cache tag instructs the browser to not

cache the object that contains the meta tag. This forces the browser to always get a

full download of that object, even if it has not changed. The refresh tag is often used

to mimic an HTTP 302 redirect response. The problem is that the refresh tag tells

the browser to override the browser's cache settings and revalidate every object

referenced by the refresh tag.

Conclusion
There are many more headers and settings involved in HTTP, but these are the ones

that can affect the performance of HTTP the most. Being aware of how HTTP and

its headers interact between the browser and the server can not only help

developers and network professionals improve the end-user experience, it can also

provide invaluable information when troubleshooting particularly slow sites and

applications.

Web application acceleration solutions can also act to improve the end-user

experience by using the many HTTP headers and browser options available to

ensure optimal performance. These solutions are often preferred over making

changes to the application itself because they are less invasive and include

additional protocol layer (TCP) enhancements and optimizations that improve the

overall delivery of applications.

WHITE PAPER

Fundamentals of HTTP
®

3

WHITE PAPER

Fundamentals of HTTP
®



•
•
•
•
•

•
•

•

•

•

TCP controls many

performance-related aspects of

web applications and is often

not manageable by developers

or network administrators.

Affecting performance by

modifying TCP parameters may

require the assistance of

application delivery controllers

or web acceleration solutions,

or changing settings in the

operating system itself.

Modern browsers render

content as it is retrieved, known

as progressive rendering,

except in the case of Internet

Explorer (IE) and table objects.

IE will wait for the entire table

object to be retrieved before

rendering it to the page, which

can cause IE to appear to be

"slow" when opening a web

page. This can often be

remedied by adding table-

layout:fixed to the style applied

to the table in question.

F5's BIG-IP WebAccelerator

employs a set of technologies

collectively called Intelligent

Browser Referencing (IBR) that

make the use of the browser's

cache and TCP connections

more efficient, often dramatically

improving end-user

performance.

F5 BIG-IP Local Traffic Manager

can act as a cookie gateway

and perform cookie

encryption/decryption. It can

also improve the performance of

encryption/decryption for

cookies as well as secure traffic

(HTTPS) due to acceleration

technology.

Understanding HTTP and how these headers control behavior of web-based

applications can lead to better end-user performance, as well as making it easier to

choose an application acceleration solution that addresses the shortcomings of

HTTP and browser-based solutions.

HTTP (Hypertext Transfer Protocol) is one of the most ubiquitous protocols on the

Internet. It is also one of the few protocols that bridges the gap between networking

and application development groups, containing information that is used by both in

the delivery and development of web-based applications.

The inner workings of HTTP, particularly the headers used by the client and the

server to exchange information regarding state and capabilities, often have an

impact on the performance of web-based applications. Understanding HTTP and

how these headers control behavior of web-based applications can lead to better

end-user performance, as well as making it easier to choose an application

acceleration solution that addresses the shortcomings of HTTP and browser-based

solutions.

GETting a Web Page
When you open up a browser and request a web page (either by setting a default

page or by entering a Uniform Resource Locater or URL), the first thing that

happens is that the browser relies upon the operating system to resolve the host

name in the URL to an IP address. Normally this is done via a DNS (Domain Name

System) query over UDP (User Datagram Protocol) on port 53. However, if the host

is listed in the local hosts file, the operating system will not make a DNS query.

When the IP address is obtained, the browser will attempt to open a TCP

(Transmission Control Protocol) connection to the web server, usually on port 80.

Once the TCP connection is made, the browser will issue an HTTP request to the

server using the connection. The request comprises a header section, and possibly

a body section (this is where things like POST data go). Once the request is sent,

the browser will wait for the response. When the web server has assembled the

response, it is sent back to the browser for rendering.

The base request comprises a method, the URI (Uniform Resource Indicator) of the

web page or resource being requested, and the HTTP version desired (1.0 or 1.1).

The method may be one of:

Get
Post
Put
Delete
Head

GET and POST are almost universally supported by web servers, with the difference

between them being the way in which query parameters are represented. With the

GET method, all query parameters are part of the URI. This restricts the length of the

parameters because a URI is generally limited to a set number of characters.

Conversely, all parameters are included within the body of the request when using

the POST method and there is usually no limit on the length of the body. PUT and

DELETE, though considered important for emerging technology architectures such

as REST (Representational State Transfer), are considered potentially dangerous as

they enable the user to modify resources on the web server. These methods are

generally disabled on web servers and not supported by modern web browsers.

The HTTP response consists of a header section and a body. The header section

tells the browser how to treat the body content and the browser renders the

content for viewing. Each HTTP response includes a status code, which indicates

the status of the request. The most common status codes are:

200 OK. This indicates success
304 Not Modified. This shows that the resource in question has not changed
and the browser should load it from its cache instead. This is only used when
the browser performs a conditional GET request.
404 Not Found. This suggests that the resource requested cannot be found
on the server.
401 Authorization Required. This indicates that the resource is protected and
requires valid credentials before the server can grant access.
500 Internal Error. This signifies that the server had a problem processing the
request.

While most developers do not need to know these status codes as they are not

used within D/HTML, AJAX (Asynchronous Javascript and XML) developers may

need to recognize these codes as part of their development efforts.

Most HTTP responses will also contain references to other objects within the body

that will cause the browser to automatically request these objects as well. Web

pages often contain more than 30 other object references required to complete the

page.

When retrieving these referenced objects, the default browser behavior is to open

two TCP connections per host seen in the references. With Internet Explorer there

is a Windows registry setting that limits this to a total of eight TCP connections.

There is a similar setting in Firefox, but its maximum is 24 TCP connections.

HTTP Headers
HTTP headers carry information about behavior and application state between the

browser and the server. These headers can be modified and examined by the

browser and the server, as well as intermediary devices such as web acceleration

solutions and application delivery controllers. The headers sent by the browser

notify the web server of the browser's capabilities. The headers sent by the web

server tell the browser how to treat the content.

The most important browser headers, in terms of end-user performance, are:

1. HTTP version (HTTP/1.0 or HTTP/1.1)

2. Accept-Encoding: gzip, deflate

3. Connection: Keep-Alive

4. If-* headers

5. Cache-Control or Pragma no-cache

The first three items are interrelated. HTTP 1.0 does not include compression–

indicated by the Accept-Encoding: gzip, deflate header, or connection keep-alives.

Compression can reduce the byte count of text by 6:1 to 8:1. This often translates

into a 40-50 percent reduction in size for a page. Connection: Keep-Alive will reuse

TCP connections for subsequent requests and will save on the latency incurred by

the 3-way hand-shake, and 4-way tear-down required for TCP connections on

every request. Keeping connections open is important in emerging web-based

applications that utilize Web 2.0 technology such as AJAX (Asynchronous

JavaScript and XML) to perform real-time updates of content because it reduces the

overhead associated with opening and closing TCP connections.

The various If-* headers, such as If-Modified-Since, will enable the web server to

send a response that indicates the content has not been modified if this is true. This

can potentially turn a 200KB download into a 1KB download, as the browser will

respond to the 304 Not Modified response by loading the referenced content from

the browser's cache. However, a lot of If-* requests for static content can result in

unnecessary round trips. This can really slow end-user performance. The no-cache

header and its relatives—no-store, private, must-revalidate, and proxy-revalidate—

request that proxies and, sometimes, web servers not cache the response to the

request. Honoring those requests can cause the servers to do a lot more work

because they must always return the full content rather than enable the browser to

use a cached version.

The most important web server headers, in terms of end-user performance, are:

1. The HTTP version (either HTTP/1.0 or HTTP/1.1) at the beginning of the

status line

2. Connection: Keep-Alive/Close

3. Encoding: gzip, deflate

4. The various cache-control headers, especially max-age

5. Content-Type:

6. Date:

7. Accept-Ranges: bytes

Again, the first three items are inter-related and are meant to impart the same

information as when sent by the browser. The cache-control headers are very

important because they can be used to store items in the browser cache and avoid

future HTTP requests altogether. However, using cached data runs the risk of using

out-dated data if the content changes before the cached object expires. Content-

type is important for telling the browser how to handle the object. This is most

important for content that the browser hands off to plug-ins (Flash, Microsoft Office

documents, etc.). It is also the biggest clue to the true function of that object in the

web application. Improper content types will often result in slower, but not broken

web applications. The Date header is very important because it affects how the

browser interprets the cache-control headers. It is important to make sure the date

on the server is set correctly so that this field is accurate. The Accept-Ranges

header is only important when downloading PDF documents. It enables the

browser to know that it can request the PDF document one page at a time.

Cookies
Cookies are sent by the web server to the browser as an HTTP header and used to

store all sorts of information about a user’s interaction with the site. Generally

speaking the use of cookies will not affect the performance of an application, unless

they are encrypted for security purposes. The reason encrypted cookies can affect

performance is because the web server needs to decrypt them before use, and the

encryption/decryption process is resource intensive. The more encrypted cookies

that are used by a site, the longer it takes for the web server to process them into a

readable format.

Meta Tags
The HTML standard allows the inclusion of meta tags within the HEAD element of

an HTML page. There are two types of meta tags: HTTP-EQUIV and NAME. HTTP-

EQUIV meta tags are equivalent to HTTP headers. These meta tags can conflict

with–and even contradict—the HTTP headers sent by the browser or web server.

This is problematic because meta tags will take precedence. In many cases, HTML

coders will use meta tags to provide web page functionality without realizing what

the meta tags do to the inner workings of the browser such as cache behavior. The

two meta tags that cause the most problems with web application performance are

the no-cache and refresh tags. The no-cache tag instructs the browser to not

cache the object that contains the meta tag. This forces the browser to always get a

full download of that object, even if it has not changed. The refresh tag is often used

to mimic an HTTP 302 redirect response. The problem is that the refresh tag tells

the browser to override the browser's cache settings and revalidate every object

referenced by the refresh tag.

Conclusion
There are many more headers and settings involved in HTTP, but these are the ones

that can affect the performance of HTTP the most. Being aware of how HTTP and

its headers interact between the browser and the server can not only help

developers and network professionals improve the end-user experience, it can also

provide invaluable information when troubleshooting particularly slow sites and

applications.

Web application acceleration solutions can also act to improve the end-user

experience by using the many HTTP headers and browser options available to

ensure optimal performance. These solutions are often preferred over making

changes to the application itself because they are less invasive and include

additional protocol layer (TCP) enhancements and optimizations that improve the

overall delivery of applications.

WHITE PAPER

Fundamentals of HTTP
®

4

WHITE PAPER

Fundamentals of HTTP
®



•
•
•
•
•

•
•

•

•

•

TCP controls many

performance-related aspects of

web applications and is often

not manageable by developers

or network administrators.

Affecting performance by

modifying TCP parameters may

require the assistance of

application delivery controllers

or web acceleration solutions,

or changing settings in the

operating system itself.

Modern browsers render

content as it is retrieved, known

as progressive rendering,

except in the case of Internet

Explorer (IE) and table objects.

IE will wait for the entire table

object to be retrieved before

rendering it to the page, which

can cause IE to appear to be

"slow" when opening a web

page. This can often be

remedied by adding table-

layout:fixed to the style applied

to the table in question.

F5's BIG-IP WebAccelerator

employs a set of technologies

collectively called Intelligent

Browser Referencing (IBR) that

make the use of the browser's

cache and TCP connections

more efficient, often dramatically

improving end-user

performance.

F5 BIG-IP Local Traffic Manager

can act as a cookie gateway

and perform cookie

encryption/decryption. It can

also improve the performance of

encryption/decryption for

cookies as well as secure traffic

(HTTPS) due to acceleration

technology.

Understanding HTTP and how these headers control behavior of web-based

applications can lead to better end-user performance, as well as making it easier to

choose an application acceleration solution that addresses the shortcomings of

HTTP and browser-based solutions.

HTTP (Hypertext Transfer Protocol) is one of the most ubiquitous protocols on the

Internet. It is also one of the few protocols that bridges the gap between networking

and application development groups, containing information that is used by both in

the delivery and development of web-based applications.

The inner workings of HTTP, particularly the headers used by the client and the

server to exchange information regarding state and capabilities, often have an

impact on the performance of web-based applications. Understanding HTTP and

how these headers control behavior of web-based applications can lead to better

end-user performance, as well as making it easier to choose an application

acceleration solution that addresses the shortcomings of HTTP and browser-based

solutions.

GETting a Web Page
When you open up a browser and request a web page (either by setting a default

page or by entering a Uniform Resource Locater or URL), the first thing that

happens is that the browser relies upon the operating system to resolve the host

name in the URL to an IP address. Normally this is done via a DNS (Domain Name

System) query over UDP (User Datagram Protocol) on port 53. However, if the host

is listed in the local hosts file, the operating system will not make a DNS query.

When the IP address is obtained, the browser will attempt to open a TCP

(Transmission Control Protocol) connection to the web server, usually on port 80.

Once the TCP connection is made, the browser will issue an HTTP request to the

server using the connection. The request comprises a header section, and possibly

a body section (this is where things like POST data go). Once the request is sent,

the browser will wait for the response. When the web server has assembled the

response, it is sent back to the browser for rendering.

The base request comprises a method, the URI (Uniform Resource Indicator) of the

web page or resource being requested, and the HTTP version desired (1.0 or 1.1).

The method may be one of:

Get
Post
Put
Delete
Head

GET and POST are almost universally supported by web servers, with the difference

between them being the way in which query parameters are represented. With the

GET method, all query parameters are part of the URI. This restricts the length of the

parameters because a URI is generally limited to a set number of characters.

Conversely, all parameters are included within the body of the request when using

the POST method and there is usually no limit on the length of the body. PUT and

DELETE, though considered important for emerging technology architectures such

as REST (Representational State Transfer), are considered potentially dangerous as

they enable the user to modify resources on the web server. These methods are

generally disabled on web servers and not supported by modern web browsers.

The HTTP response consists of a header section and a body. The header section

tells the browser how to treat the body content and the browser renders the

content for viewing. Each HTTP response includes a status code, which indicates

the status of the request. The most common status codes are:

200 OK. This indicates success
304 Not Modified. This shows that the resource in question has not changed
and the browser should load it from its cache instead. This is only used when
the browser performs a conditional GET request.
404 Not Found. This suggests that the resource requested cannot be found
on the server.
401 Authorization Required. This indicates that the resource is protected and
requires valid credentials before the server can grant access.
500 Internal Error. This signifies that the server had a problem processing the
request.

While most developers do not need to know these status codes as they are not

used within D/HTML, AJAX (Asynchronous Javascript and XML) developers may

need to recognize these codes as part of their development efforts.

Most HTTP responses will also contain references to other objects within the body

that will cause the browser to automatically request these objects as well. Web

pages often contain more than 30 other object references required to complete the

page.

When retrieving these referenced objects, the default browser behavior is to open

two TCP connections per host seen in the references. With Internet Explorer there

is a Windows registry setting that limits this to a total of eight TCP connections.

There is a similar setting in Firefox, but its maximum is 24 TCP connections.

HTTP Headers
HTTP headers carry information about behavior and application state between the

browser and the server. These headers can be modified and examined by the

browser and the server, as well as intermediary devices such as web acceleration

solutions and application delivery controllers. The headers sent by the browser

notify the web server of the browser's capabilities. The headers sent by the web

server tell the browser how to treat the content.

The most important browser headers, in terms of end-user performance, are:

1. HTTP version (HTTP/1.0 or HTTP/1.1)

2. Accept-Encoding: gzip, deflate

3. Connection: Keep-Alive

4. If-* headers

5. Cache-Control or Pragma no-cache

The first three items are interrelated. HTTP 1.0 does not include compression–

indicated by the Accept-Encoding: gzip, deflate header, or connection keep-alives.

Compression can reduce the byte count of text by 6:1 to 8:1. This often translates

into a 40-50 percent reduction in size for a page. Connection: Keep-Alive will reuse

TCP connections for subsequent requests and will save on the latency incurred by

the 3-way hand-shake, and 4-way tear-down required for TCP connections on

every request. Keeping connections open is important in emerging web-based

applications that utilize Web 2.0 technology such as AJAX (Asynchronous

JavaScript and XML) to perform real-time updates of content because it reduces the

overhead associated with opening and closing TCP connections.

The various If-* headers, such as If-Modified-Since, will enable the web server to

send a response that indicates the content has not been modified if this is true. This

can potentially turn a 200KB download into a 1KB download, as the browser will

respond to the 304 Not Modified response by loading the referenced content from

the browser's cache. However, a lot of If-* requests for static content can result in

unnecessary round trips. This can really slow end-user performance. The no-cache

header and its relatives—no-store, private, must-revalidate, and proxy-revalidate—

request that proxies and, sometimes, web servers not cache the response to the

request. Honoring those requests can cause the servers to do a lot more work

because they must always return the full content rather than enable the browser to

use a cached version.

The most important web server headers, in terms of end-user performance, are:

1. The HTTP version (either HTTP/1.0 or HTTP/1.1) at the beginning of the

status line

2. Connection: Keep-Alive/Close

3. Encoding: gzip, deflate

4. The various cache-control headers, especially max-age

5. Content-Type:

6. Date:

7. Accept-Ranges: bytes

Again, the first three items are inter-related and are meant to impart the same

information as when sent by the browser. The cache-control headers are very

important because they can be used to store items in the browser cache and avoid

future HTTP requests altogether. However, using cached data runs the risk of using

out-dated data if the content changes before the cached object expires. Content-

type is important for telling the browser how to handle the object. This is most

important for content that the browser hands off to plug-ins (Flash, Microsoft Office

documents, etc.). It is also the biggest clue to the true function of that object in the

web application. Improper content types will often result in slower, but not broken

web applications. The Date header is very important because it affects how the

browser interprets the cache-control headers. It is important to make sure the date

on the server is set correctly so that this field is accurate. The Accept-Ranges

header is only important when downloading PDF documents. It enables the

browser to know that it can request the PDF document one page at a time.

Cookies
Cookies are sent by the web server to the browser as an HTTP header and used to

store all sorts of information about a user’s interaction with the site. Generally

speaking the use of cookies will not affect the performance of an application, unless

they are encrypted for security purposes. The reason encrypted cookies can affect

performance is because the web server needs to decrypt them before use, and the

encryption/decryption process is resource intensive. The more encrypted cookies

that are used by a site, the longer it takes for the web server to process them into a

readable format.

Meta Tags
The HTML standard allows the inclusion of meta tags within the HEAD element of

an HTML page. There are two types of meta tags: HTTP-EQUIV and NAME. HTTP-

EQUIV meta tags are equivalent to HTTP headers. These meta tags can conflict

with–and even contradict—the HTTP headers sent by the browser or web server.

This is problematic because meta tags will take precedence. In many cases, HTML

coders will use meta tags to provide web page functionality without realizing what

the meta tags do to the inner workings of the browser such as cache behavior. The

two meta tags that cause the most problems with web application performance are

the no-cache and refresh tags. The no-cache tag instructs the browser to not

cache the object that contains the meta tag. This forces the browser to always get a

full download of that object, even if it has not changed. The refresh tag is often used

to mimic an HTTP 302 redirect response. The problem is that the refresh tag tells

the browser to override the browser's cache settings and revalidate every object

referenced by the refresh tag.

Conclusion
There are many more headers and settings involved in HTTP, but these are the ones

that can affect the performance of HTTP the most. Being aware of how HTTP and

its headers interact between the browser and the server can not only help

developers and network professionals improve the end-user experience, it can also

provide invaluable information when troubleshooting particularly slow sites and

applications.

Web application acceleration solutions can also act to improve the end-user

experience by using the many HTTP headers and browser options available to

ensure optimal performance. These solutions are often preferred over making

changes to the application itself because they are less invasive and include

additional protocol layer (TCP) enhancements and optimizations that improve the

overall delivery of applications.

WHITE PAPER

Fundamentals of HTTP
®

5

F5 Networks, Inc.
401 Elliott Avenue West, Seattle, WA 98119
888-882-4447 www.f5.com

Americas
info@f5.com

Asia-Pacific
apacinfo@f5.com

Europe/Middle-East/Africa
emeainfo@f5.com

Japan
f5j-info@f5.com

©2015 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or
affiliation, express or implied, claimed by F5. WP-Fundamentals-of-HTTP 0113

WHITE PAPER

Fundamentals of HTTP
®


