
TCP Optimization for Service
Providers
Service providers want to deliver the best quality of experience
possible to their subscribers while maximizing network efficiency.
Data optimization technologies such as video compression and
caching have proven beneficial in the past. Unfortunately, the
benefits of these technologies have diminished due to the increased
use of encrypted connections and the emergence of protocols like
SPDY 2.0. Service providers need to look at TCP optimization as a
method to improve subscriber QoE.

White Paper

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

1

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

2

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

3

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

4

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

5

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

6

WHITE PAPER

TCP Optimization for Service Providers
®

https://f5.com/Portals/1/Images/whitepaper-images/tcp-optimization-sp/DIAG-SP-36353-tcp-optimization-Fig3.png

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

7

WHITE PAPER

TCP Optimization for Service Providers
®

https://f5.com/Portals/1/Images/whitepaper-images/tcp-optimization-sp/DIAG-SP-36353-tcp-optimization-Fig4.png

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

8

WHITE PAPER

TCP Optimization for Service Providers
®

Introduction
We are living in a connected world. The Internet is in nearly everybody’s life and in

the palms of their hands. In the first quarter of 2014, smartphone sales hit 281.5

million units, rising 28.6 percent Q/Q. The number of mobile devices connected to

the Internet exceeded the global population in 2014, and will continue to grow from

there. The amount of data consumers use is growing as well. Some sources claim

that data traffic will increase eleven fold between 2013 and 2018.

The Internet is also infiltrating other aspects of our lives. Smart cars, smart glasses,

and even smart TVs are available today. And although wireless technology is

nothing new, it highlights how we have adapted from a life with the Internet as a

luxury into a life with it constantly running in the background. This concept that

many parts of our lives can now be controlled wirelessly is called the “Internet of

Things.”

How exactly will the Internet handle all of the data transportation required? Through

Transmission Control Protocol (TCP), the key transport protocol of the Internet

infrastructure. TCP is the essential glue, which together with Internet Protocol (IP),

ensures that all applications connect smoothly to our devices. It allows us to share

resources with billions of people, all over the world, at the same time. It also

establishes and manages traffic connections and congestion while taking care of

transmission errors. TCP has many moving parts, with new ones being added every

day. Without the proper tuning and combination of these parts, TCP can hurt more

than it helps in optimizing network use. Now F5 has created a framework to tune

and adjust the parameters of TCP to enhance the connections and subscriber

experience.

Historical Context
Initially, TCP had very few configurable parameters. When it was designed in 1973,

during the infancy of the Internet, it was made for a wired infrastructure—the

Advanced Research Projects Agency (ARPA) Net. The ARPA Net was a low-capacity

network of 213 computers for the purpose of sharing knowledge among some of

the world’s leading research institutions at the time; thus, the design of the network

and protocols was very different from what we use today.

Beginning in 1986 after 1G technology was released, the Internet began to

experience “congestion collapses” where the transmission rates of the networks

dropped by a thousand fold from 32 Kbps to 40 bps. This drastic drop in rates led

to some investigation and analysis by leading computer scientists including Van

Jacobson, who helped create what we now know as congestion control algorithms.

These algorithms are methods that allow a TCP stack to alter how it treats data

based on network conditions.

The Internet has followed the trend of most technologies still alive from the early

’70s—advancing at a rate nobody could imagine. Now, with the rise of

smartphones, we are using mobile networks such as 3G and 4G, and high-

capacity, fixed-line networks. Needless to say, these networks have very different

characteristics than their ancestral networks.

Network Characteristics
As the Internet has progressed, user experience has always been the most

important factor. The new breadth of access technologies leads to a wide spread of

network characteristics. Recently, network access has shifted from wired networks

to 3G and 4G cellular networks.

Network Base
Latency

Base
Download
Speeds

Buffer
Sizes

Characteristics

3G (released
early 2000s)

100–500 ms 21–42 Mbps Small High packet loss, even without congestion.

4G (late
2000s)

50 ms Up to 300
Mbps

Larger
than 3G

Lower packet loss due to error correction. Increased latency due to
buffer sizes and not necessarily congestion.

Figure 1: Network characteristics for different wireless technologies.

Modern network traffic is harder to control than it was in the 1980s because packet

loss does not necessarily mean congestion in the networks, and congestion does

not necessarily mean packet loss. As shown in figure 1, 3G and 4G networks both

exhibit different types of behavior based on their characteristics, but a server may

view the different aspects as congestion. This means that an algorithm cannot only

focus on packet loss or latency for determining congestion. Other modern access

technologies, such as fiber to the home (FttH) and WiFi, expand upon the

characteristics represented above by 3G and 4G, making congestion control even

more difficult. With different access technologies having such different

characteristics, a variety of congestion control algorithms has been developed in an

attempt to accommodate the various networks.

Algorithm Evolution
The changing network characteristics have led to a simultaneous evolution of

congestion control algorithms.

Packet-Loss Algorithms

Initial algorithms, such as TCP Reno, use packet loss to determine when to reduce

the congestion window, which influences the send rate. TCP Reno increases the

send rate and congestion window by 1 MSS (maximum segment size) until it

perceives packet loss. Once this occurs, TCP Reno slows down and cuts the

window in half. However, as established in the previous section, modern networks

may have packet loss with no congestion, so this algorithm is not as applicable.

Bandwidth-Estimation Algorithms

The next generation of algorithms is based on bandwidth estimation. These

algorithms change the transmission rate depending on the estimated bandwidth at

the time of packet loss. TCP Westwood and its successor, TCP Westwood+, are

both bandwidth-estimating algorithms, and have higher throughput and better

fairness over wireless links when compared to TCP Reno. However, these

algorithms do not perform well with smaller buffers or quality of service (QoS)

policies.

Latency-Based Algorithms

The latest congestion control algorithms are latency-based, which means that they

determine how to change the send rate by analyzing changes in round-trip time

(RTT). These algorithms attempt to prevent congestion before it begins, thus

minimizing queuing delay at the cost of goodput (the amount of useful information

transferred per second). An example of latency-based algorithms is TCP Vegas. TCP

Vegas is heavily dependent upon an accurate calculation of a base RTT value, which

is how it determines the transmission delay of the network when buffers are empty.

Using the base RTT, TCP Vegas then estimates the amount of buffering in the

network by comparing the base RTT to the current RTT. If the base RTT estimation

is too low, the network will not be optimally used; if it is too high, TCP Vegas may

overload the network. Also, as mentioned earlier, large latency values do not

necessarily mean congestion in some networks, such as 4G.

By knowing the traffic characteristics and keeping the current inadequate algorithms

in mind, service providers can implement an ideal TCP stack.

The Ideal TCP Stack
The ideal TCP stack should achieve one goal: optimizing a subscriber’s QoE. To

accomplish this, it must do three things: establish high goodput, minimize buffer

bloat, and provide fairness between the flows.

High Goodput

High goodput is important for determining if the stack is optimized because it is a

measure of how much of the data going through the network is relevant to the

client. Goodput is different from throughput, which includes overhead such as

unnecessary retransmission and protocol headers. Goodput also addresses the

difference between content that was stalled or failed to complete versus content

that the consumer was able to utilize. To help with maximizing goodput, TCP needs

to address packet loss from interference as well as handle both small and large

router buffers. Delay-based algorithms fail when competing with other flows for

bandwidth; bandwidth-based algorithms fail when the buffers are too small or when

quality of service policies are present in the network; loss-based algorithms fail by

incorrectly slowing down for interference-based loss.

Buffer Bloat

Buffer bloat occurs when too many packets are buffered, increasing queuing delay

and jitter in the network. Buffer bloat leads to performance issues by impacting

interactive and real-time applications. It also interferes with the RTT calculation and

negatively impacts retransmission behaviors. Thus, minimizing buffer bloat is ideal

for an optimized TCP stack. Loss-based algorithms fail to minimize buffer bloat

because they react after packets have been lost, which only happens once a buffer

has been filled. These algorithms fail to lower the send rate and allow the buffer to

drain. Instead, the algorithms choose rates that maintain the filled buffer.

Flow Fairness

Fairness between flows ensures that no one user’s traffic dominates the network to

the detriment of other users. Delay-based algorithms fail to fulfill this criteria because

loss-based flows will fill all of the buffers. This leads to the delay-based flows

backing off and ultimately slowing down to a trickle.

The F5 Solution
The F5 solution accomplishes the goal of the ideal TCP stack. It improves QoE for

customers—resulting in less subscriber churn and increased revenue for service

providers.

Achieving High Goodput

High goodput is achieved by maximizing the amount of data sent within a single

packet and optimizing how quickly data is sent. The proprietary hybrid loss and

latency-based algorithm, named TCP Woodside, is designed to maximize goodput

while minimizing buffer bloat. It controls buffer size by constantly monitoring

network buffering, and will slow down preemptively when needed—leading to a

reduction in packet loss and minimal buffer bloat. However, when the queuing delay

is minimal, TCP Woodside will rapidly accelerate to maximize the use of the available

bandwidth, even when interference-based packet loss is present.

Figure 2: Comparison of real network tests between three carriers of TCP High Speed, TCP
Illinois, and TCP Woodside algorithms. TCP Woodside performs particularly well.

Avoiding Buffer Bloat

Buffer bloat can be avoided by pacing the flow of data transmitted across the

network. By knowing the speed at which different flows are being sent, the stack

can control how quickly to send the packets through to the end device. This allows

the buffers to adjust up without being overfilled. As a result, inconsistent traffic

behaviors and packet loss due to network congestion are prevented.

In the figure 3 graphs below, a non-optimized stack’s latency is compared to that of

an F5 optimized stack. Both stacks have throughputs of 11 Mbps. In the left graph,

the non-optimized stack has an increasing RTT—up to as much as 2.5 seconds—

as more packets are sent through the network and the buffer starts to become

bloated. However, in the right graph, the optimized stack’s RTT stays around 200

milliseconds even as more packets are sent. This steady RTT time leads to an

improved end-user QoE due to less “bursty” traffic, and reduces buffer bloat as well.

Figure 3: On the left is a standard, non-optimized transmission. Note how the average RTT increases as more packets are sent. On
the right is an F5 optimized transmission. Despite more packets, the average RTT stabilizes and does not increase. Both graphs are
from real 4G network tests.

Improving Fairness of Flows

Not only does rate pacing help with buffer bloat, but it also improves the fairness

across flows. Without rate pacing, packets are sent immediately and consecutively.

Having two flows at the same time means one flow will see different network

conditions than the other flow, usually with respect to congestion. These conditions

will affect the behavior of each flow.

As shown in the figure 4 left graph below, the flows have different behaviors at

different times. Sometimes one flow has more bandwidth and sends more

information. However, the next second, another flow may gain that bandwidth and

stop the flow of others.

Controlling the speed at which packets are sent on a connection allows gaps to

occur between packets on any individual flow. Instead of both flows attempting to

send consecutive packets that become intermixed, one flow will send a packet, and

the second flow can then send another packet within the time gap of the first flow.

This behavior changes how the two flows see the network as well. Rather than one

flow seeing an open network and the other seeing a congested network, both flows

will likely recognize similar congestion conditions and be able to share the

bandwidth more efficiently (as shown in the right graph).

Figure 4: Without F5 optimizations, flows had varying bandwidths at all moments. With F5 optimizations, the flows virtually had the
same bandwidth no matter the network congestion status. Both graphs are from real 4G network tests.

Maximizing Performance

With TCP Woodside and rate-pacing features working together, live test data

shows that performance improves enough to bump subscribers from one category

of congestion or signal strength to one category better. In figure 5, an optimized

subscriber on heavy congestion receives better performance than the baseline

medium congestion, and the optimized medium congestion signal performance is

better than the baseline uncongested.

Figure 5: TCP optimization improvement under different conditions.

The F5 stack, which implements both standardized and proprietary optimizations,

accomplishes its goals through two main features: proprietary hybrid loss and

latency-based algorithm (TCP Woodside), and rate-pacing capabilities. These

features are able to constantly monitor network buffers—sending packets at rates

that prevent buffer bloat and improving fairness across flows—while also

preemptively slowing down to prevent congestion during heavy traffic. Once traffic

lightens up, the algorithm speeds up to maximize the use of available bandwidth.

Conclusion
The Internet has gone through many changes since it was initially implemented on

213 fixed-line hosts in the late 1970s. With the number of Internet-connected

devices now exceeding the global population, people speculate about the future

speed of the Internet. As the world moves toward becoming completely mobile, new

technology is being developed to handle the traffic across wireless networks.

Though many types of TCP stacks are available, only F5’s properly provides for all

three characteristics of an ideal TCP stack: having high goodput, minimizing buffer

bloat, and allowing for fairness between flows. In addition to these unique functions,

F5’s TCP stack integrates with other F5 solutions. This allows multiple

functionalities—including deep packet inspection, traffic steering, and load

balancing—to be consolidated onto one platform.

http://www.idc.com/getdoc.jsp?containerId=prUS24823414

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white_paper_c11-520862.html

http://ee.lbl.gov/papers/congavoid.pdf

1

2

3

1

2

3

WHITE PAPER

TCP Optimization for Service Providers
®

9

F5 Networks, Inc.
401 Elliott Avenue West, Seattle, WA 98119
888-882-4447 www.f5.com

Americas
info@f5.com

Asia-Pacific
apacinfo@f5.com

Europe/Middle-East/Africa
emeainfo@f5.com

Japan
f5j-info@f5.com

©2015 F5 Networks, Inc. All rights reserved. F5, F5 Networks, and the F5 logo are trademarks of F5 Networks, Inc. in the U.S. and in certain other countries. Other F5
trademarks are identified at f5.com. Any other products, services, or company names referenced herein may be trademarks of their respective owners with no endorsement or
affiliation, express or implied, claimed by F5. 0113

WHITE PAPER

TCP Optimization for Service Providers
®

http://www.idc.com/getdoc.jsp?containerId=prUS24823414
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://ee.lbl.gov/papers/congavoid.pdf

