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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.

WHITE PAPER

VIPRION Clustered Multiprocessing
®

2

WHITE PAPER

VIPRION Clustered Multiprocessing
®



Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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Introduction
Since Gordon E. Moore's landmark observation in 1965, the entire technology

industry has been rooted in the concept that the complexity of integrated circuits

doubles every 18 months (originally stated as every two years). However, many

people incorrectly interpret “Moore's Law” to mean that the overall productivity of

computer-based processes increases at the same exponential rate.

In reality, improvements in practical computer power lag far behind these

exponential hardware improvements. While Moore's Law continues to be a fair

indicator of the complexity of integrated circuit design, this complexity is not being

applied towards single, faster, larger, and more productive computing units with

increasingly larger buses. Instead, it's being implemented in processors with

multiple computing units in smaller chips. Also, while the complexity and overall

computing power of the processor stays true to Moore's Law, the increased

complexity of software design due to multicore processors leaves the end result less

than ideal.

Manufacturers of dedicated appliance solutions, or software built to run on off-the-

shelf hardware, intending to ride the “Intel power curve” to consistently increase the

overall performance of their products, quickly hit the performance wall of a single

processor (core). Individual processor speed, which had for many years increased

dramatically and consistently, began to stagnate. The key to maintaining

performance became multiprocessor or multicore design.

Typical Multiprocessing Implementations
On single-processor, multipurpose machines (like home computers), multitasking

and multithreading resembles multiprocessing by enabling the single processor to

context-switch between processes or between multiple threads within the same

process. For instance, a single-processor home computer can seemingly run both a

web-browser process and a word-processing process simultaneously. The single

processor can only run one process at a time, but with multitasking, it can quickly

switch between the two processes to give the appearance of simultaneous

execution. Similarly, individual threads within a process can be treated in the same

way. On a single-processor system, however, the number of processing cycles is

still finite and the processes share that single resource.

Multiprocessing is a computing architecture that allows the simultaneous use of

multiple processors (cores) in order to increase the overall performance of the

machine. In multiprocessor machines, both the processes and the threads can run

simultaneously on different processors instead of just giving the appearance of

simultaneous execution. In general, there have been two predominant methods of

achieving this goal: Symmetric Multiprocessing (SMP) and Asymmetric

Multiprocessing (ASMP).

SMP is very similar to the multitasking used on single processor systems. The

processes themselves are unaware of the existence of multiple processors. The

underlying operating system kernel employs a scheduling process to virtualize the

processors and decide which process or thread executes on each processor for any

given cycle. This, in effect, still uses multitasking process context-switching; each

processor is not guaranteed to continually service the same process (or thread).

However, this is the easiest way to gain access to all processing cores with minimal

impact on the software design-and it is supported, out of the box, by most

operating systems. This is generally more applicable to multipurpose computing

platforms (PCs, servers, and so on) although many special-purpose appliances still

rely on this form of multiprocessing.

ASMP relies less on generic kernel-level virtualization to provide optimal use of

multiple processors and puts the control directly into the hands of the developer.

Instead of “load balancing” the processes across all processing cores, the

application is written to target specific processing cores to handle specific

processes. Process A can be dedicated to core 1 and process B can be dedicated

to core 2. This significantly reduces or eliminates the need for process context-

switching. It also allows the system to take advantage of special-purpose

processors (network processors, graphics processors, and others) to augment

general-purpose processors much more efficiently. This is more applicable to

purpose-built appliance computing platforms, such as dedicated routers,

Application Delivery Controllers (ADCs), firewalls, and so on.

Both of these methods can significantly improve the performance of an application,

but at a cost.

Issues with Typical Multiprocessing Appliances
Both SMP and ASMP have some significant issues-especially when used for

dedicated applications-that prevent them from fully utilizing the additional

processing power of multiple processors, particularly as the number of available

cores increases.

SMP has significant overhead associated with the arbitrary distribution of process

execution. First, the scheduling process itself requires processing cycles that are

not available to the application for which the device was built. As the number of

processing cores increases, so does the number of cycles required to handle

process scheduling and inter-process communication. In addition, without specific

interaction from the application developer, SMP can have significant overhead when

context-switching is required-a very costly, cycle-intensive process. While process

scheduling has continued to improve in efficiency and purpose-built appliances

generally do not run as many unique processes as multipurpose computing

platforms, generic SMP still has significant overhead that affects the available

computing power.

The most significant issue for ASMP is the need to rewrite and design the specific

application to accommodate multiple processing cores. This can add substantial

development time, especially when trying to adapt old code. It also increases the

complexity of the software (and thus the cost of the developers) and requires code

revisions whenever the number or type of available processing cores changes. For

example, if the system goes from dual-core to quad-core processors, it needs to be

accounted for. Another drawback of ASMP is that, since processes are not load

balanced, a single core might have idle cycles while another is incapable of handling

its requests-a probability that increases with the number of cores. The efficiencies

gained by eliminating context-switching can be quickly eaten up by the inefficiencies

of processor usage or the complexity of development.

This is not to say that neither model does not provide increased processing

capability but, rather, that both models suffer from a case of diminishing returns. A

dual-processor/core system does not perform twice as fast as a single-core system.

Each core added to the system adds a diminishing amount of computing resources,

eventually reaching the point at which all the computing power of an additional core

is eaten up by managing and implementing that core. This results in no appreciable

increase in overall computing power.

This is, to some degree, explained by Amdahl's Law. Named for Gene Amdahl

(father of F5's first CTO, Carl Amdahl), Amdahl's Law essentially states that the

amount of performance increase that can be expected by parallelizing a process is a

factor of the amount of the process that can truly be parallelized. If a process

requiring 10 units of time can only be 50 percent parallelized, the process will never

run in less than five units, even if the parallelized portion is processed instantly. As a

result, the entire process can never be more than twice as fast.

The problem, therefore, is that both traditional multiprocessing methods are tightly

coupled, suffer from a shared-memory model, and the need for significant inter-

process communications. Regardless of whether you virtualize a single process

across multiple processing cores with SMP or attempt to break the process across

multiple cores with ASMP, both solutions typically share memory between threads

or processes and must allow communication between them. This means that in

order to avoid race conditions and data corruption, the entire process must be

painstakingly orchestrated-thus, the “tightly coupled” definition. For example, any

memory access must issue a lock to prevent other processes or threads from

simultaneously acting on the same data. Issuing memory locks is not only expensive

in terms of cycle times (if using the same data, other processes must wait until the

lock is cleared to continue execution), but the entire system can be throttled by the

number of locks that can be maintained per unit of work. If we have to process 1

million transactions per second and take out three locks per transaction, at 300nS

per lock, 90 percent of the CPU time is taken up on locking-leaving little for actual

transaction processing.

Consequently, while most manufacturers have focused on increasing the

multiprocessor capabilities of their products, the tightly coupled nature of both SMP

and ASMP has limited the proportion of their systems that can be parallelized. With

the remaining serialized portion of the system no longer improving in performance, it

is easily seen why most purpose-built appliances continue to see a diminishing

return on multiprocessor implementations. They have been continually improving

the performance of only part of their system.

The Logical Solution

Déjà Vu All Over Again

This problem of parallelization conjures feelings of déjà vu at F5. It is

remarkably similar to a problem we've seen-and solved-before. In the early

days of Application Delivery Controllers, when they were known as “load

balancers,” F5 competed against many host-based software solutions. F5

invariably outperformed these systems when the pool of servers exceeded

more than a few systems. Why? Because the amount of overhead

necessary to communicate state information between the hosts quickly

exceeded the performance improvement of adding the additional systems;

they suffered severely from diminishing returns.

Although simplistic, the analogy can be made that the servers were much

like the processors in a multiprocessor implementation and the state

information represented the shared-memory model and inter-process

communications implemented by SMP and ASMP. F5's BIG-IP system

increased the proportion of parallelization of the system by removing the

need for the shared state-significantly improving the performance of the

overall system.

If you accept that there is little to be done about the performance improvement of

the serialized portion of a system and you recognize the fact that Amdahl's Law

demonstrates the futility of continuing to improve the performance of a static

parallelized portion, there remains only one way to improve the overall performance

of the system in any substantial way. You will need to alter the amount of the

process that can be parallelized in proportion to that which remains serialized.

The math is pretty straightforward. Let's imagine a simple 10-step process. A fully

serialized version will take 10 cycles to complete:

Now, let's say that the process can be 40 percent parallelized and you have two

cores that can execute the process. That might look like this:

Sixty percent, or six steps, must still be done in sequence, but the remaining four

steps can be executed simultaneously on two processors (requiring 2 cycles:

2 cycles x 2 processors = 4 steps executed). This process now only takes eight

cycles to complete, for a 20 percent improvement in overall performance. However, if

you add two additional cores, it would look like this:

Tendency to Tightly Couple: The more tightly coupled the code, the

more inter-process communication overhead there is. The F5

implementation of CMP makes it hard to tightly couple threads/processes.

Automatic Scheduling Overhead: This is the scheduling that is done

between threads or processes by the kernel. If the number of processes is

greater than the number of CPUs, there is a overhead increases.

Manual Scheduling Overhead: This is the re-balancing of the

thread/process count for a processing pipeline. It frequently crops up in

ASMP designs and sometimes in SMP designs.

The process now only takes seven cycles, which represents a total of a 30 percent

improvement over the original serialized process, but only a 12.5 percent increase

over the eight-cycle version (seven cycles versus eight). This perfectly demonstrates

the reason for the diminished returns. Parallelizing the process (as best as possible)

and adding a second core returned a 20 percent improvement, but adding two more

cores only returned an additional 12.5 percent improvement. In this simple

illustration, adding any more cores will do absolutely nothing to improve

performance, as all steps that can be run in parallel already are. If, however, you can

make the process 80 percent parallelized, that same four-core system can now run

the process in four cycles:

That's an additional 43 percent performance increase, resulting in a 60 percent

performance increase from the original serialized system. The difference was not in

adding more cores to the system, but from increasing the amount of the process

that could be run in parallel to more fully utilize those cores.

The F5 Way: Clustered Multiprocessing
F5 realized early on that simply adopting multiprocessor architectures without

addressing the proportion of the process that can be parallelized was a short-term,

dead-end street. The company invested heavily in developing a way to increase the

parallelization of the traffic management process.

The result of this investment is F5's Clustered Multiprocessing (CMP) architecture.

CMP combines the benefits of load balancing and high availability provided by SMP

and the efficiency of limited context-switching and special-purpose processor

utilization of ASMP. This is all accomplished while eliminating the need for the

shared-memory model and reducing the inter-process communications that

continue to shackle the performance of other vendors' multiprocessor designs.

CMP provides a virtualized processing fabric that delivers industry-changing

performance, scalability, extensibility, adaptability, and manageability.

To start with, TMOS, the purpose-built software platform on which F5 products run,

is extremely efficient when run on a single core. The Traffic Management Microkernel

(TMM) is a single-threaded, non-context-switching process optimized specifically for

processing Application Delivery Network traffic. In addition, the TMM is designed to

easily facilitate ASMP principles to incorporate performance improvements from

special-purpose processors. For instance, when executing encryption processes,

the TMM is designed to do it on the general-purpose processor (in software), but if

an encryption coprocessor is present, it can offload it to the special-purpose

processor. It does this without any change in operation other than the increased

performance of the dedicated hardware. The TMOS platform, which F5 also spent

significant time and resources developing, consistently outperforms other products

in the marketplace and remains the core of CMP.

From that basis, most manufacturers would simply attempt to use SMP to distribute

TMOS process across multiple processors-with shared memory, network card, and

special purpose processors. Others might attempt to run multiple instances of the

TMM on different processors-still with the requisite shared memory, network card,

and special-purpose processors. Instead, CMP enables load balancing of multiple

processing cores, each with its own dedicated memory, network interface, and

special-purpose processors. Each core runs its own, completely independent TMM

process. By separating the dependencies between the instances, CMP allows more

of the traffic management process-virtually the entire process-to be parallelized. This

provides a substantial benefit to the overall performance of the system. The

hardware that enables CMP is comprised of two important, proprietary F5

technologies: the Disaggregator and the High Speed Bridge (HSB).

The Disaggregator acts as a hardware-based load balancer, distributing traffic flows

between the independent TMM instances and managing flow affinity if or when

necessary. Not only does this facilitate a near 1:1 linear performance growth

(doubling the number of processing cores nearly doubles the computing power with

no diminished returns), but it completely virtualizes the processing cores from the

system and the other cores. This provides high availability and reliability in the event

that any core becomes non-functional. In the VIPRION chassis, this includes the

addition and/or removal of entire blades and their associated processing cores.

The HSB delivers direct, non-blocking communication between the TMM instances

and the outside world without the loss normally associated with Ethernet

interconnects. It also provides the streamlined message-passing interface that

enables TMM instances to share information. This provides the unsurpassed

throughput and interconnectivity of each processor's dedicated network interfaces.

It also mitigates the performance impact of inter-process communications in the few

remaining instances where it takes place. Again, in the VIPRION chassis, this

facilitates efficient traffic distribution and message-passing between blades as well

as within the cores of each blade.

Changing the Rules
Up until now, the game has been pretty simple-and widely understood. First, it was

to optimize your code to run on a single processor as best you can and ride the

“Intel power-curve.” Then, it was to optimize your code for SMP or ASMP and then

build your platforms with as many processing cores as possible. All the while,

performance improvements have slowly dwindled to miniscule amounts.

CMP changes the rules of the game. Instead of working to continually improve the

performance of a never-changing proportion of parallelized processes, CMP's most

basic tenet is to change that proportion. Continuing improvements in performance

can only be realized by increasing the amount of the application delivery process

that can be parallelized. Only parallelizing nearly all of that process can enable near

1:1 linear scaling-fully utilizing all the processing cores.

In much the same way that F5 redefined the load balancer at the turn of the century

with the implementation of SSL offload-starting the evolution of Application Delivery

Controllers-CMP redefines the Application Delivery Controller. The ADC is no longer

limited by processing capability or network throughput. It is now free to grow with

the needs of the organization and has the scalability to adapt to new, unforeseen

functionality down the road-all within a single, easy-to-manage package. CMP, in

combination with TMOS, provides F5 customers with the scalability, extensibility,

adaptability, and manageability to consolidate the data center of today and future-

proof the data center of tomorrow.
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